Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(25): 5390-5401, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37316958

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) provide a complex matrix for environmentally persistent free radicals (EPFRs) to stabilize in particulate matter, allowing them to be transported over long distances in the atmosphere while participating in light-driven reactions and causing various cardiopulmonary diseases. In this study, four PAHs ranging from three to five rings (anthracene, phenanthrene, pyrene, and benzo[e]pyrene) were investigated for EPFR formation upon photochemical and aqueous-phase aging. Through electron paramagnetic resonance (EPR) spectroscopy, it was found that approximately 1015 to 1016 spins g-1 of EPFRs were formed from the PAH upon aging. EPR analysis also revealed that carbon-centered and monooxygen-centered radicals were predominantly formed by irradiation. However, oxidation and fused-ring matrices have added complexity to the chemical environment of these carbon-centered radicals, as observed by their g-values. This study showed that atmospheric aging results not only in the transformation of PAH-derived EPFR but also in an increase in EPFR concentrations of up to 1017 spins g-1. Therefore, because of their stability and photosensitivity, PAH-derived EPFRs have a major impact on the environment.

2.
Environ Sci Technol ; 55(19): 13152-13163, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34529399

RESUMO

This study focused on the photoaging of atmospheric particulate matter smaller than 2.5 µm (PM2.5) in the aqueous phase. PM2.5 was collected during a winter, a spring, and a summer campaign in urban and rural settings in Colorado and extracted into water. The aqueous extracts were photoirradiated using simulated sunlight, and the production rate (r•OH) and the effects of hydroxyl radicals (•OH) were measured as well as the optical properties as a function of the photoaging of the extracts. r•OH was seen to have a strong seasonality with low mean values for the winter and spring extracts (4.8 and 14 fM s-1 mgC-1 L, respectively) and a higher mean value for the summer extracts (65.4 fM s-1 mgC-1 L). For the winter extracts, •OH was seen to mostly originate from nitrate photolysis while for the summer extracts, a correlation was seen between r•OH and iron concentration. The extent of photobleaching of the extracts was correlated with r•OH, and the correlation also indicated that non-•OH processes took place. Using the •OH measurements and singlet oxygen (1O2) measurements, the half-life of a selection of compounds was modeled in the atmospheric aqueous phase to be between 1.9 and 434 h.


Assuntos
Óxidos de Nitrogênio , Material Particulado , Radical Hidroxila , Água
3.
Environ Sci Technol ; 53(2): 682-691, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30589540

RESUMO

Brown carbon (BrC) is a collection of oxidized atmospheric aromatic compounds detected worldwide with broad functionality. This multifunctional nature allows BrC to be water-soluble and bioavailable and demonstrate light absorption at multiple wavelengths. Polycyclic aromatic hydrocarbons (PAH) are major primary products of combustion emissions and have long been known to oxidize in the environment as components of secondary organic aerosols. In this study, we have exposed aqueous PAH suspensions to simulated sunlight to investigate oxidized PAH as BrC precursors. Illuminated samples of naphthalene and anthracene demonstrated growth of several new products with absorptions and oxidation consistent with humic-like substances (HULIS). Reactions of aqueous naphthalene, anthracene, and their oxidized derivatives were found to produce chromatographic and spectroscopic evidence of HULIS formation when exposed to sunlight. The association of oxyradicals with HULIS has implications on human health via lung tissue damage; and its absorption character may add to radiative forcing processes in the atmosphere. The overall product characterizations from naphthalene and anthracene indicate reaction mechanism pathways that use oxidized alcohol and quinone as intermediate species.


Assuntos
Carbono , Hidrocarbonetos Policíclicos Aromáticos , Aerossóis , Atmosfera , Substâncias Húmicas
4.
Anal Chem ; 88(9): 4733-41, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27055808

RESUMO

The rapid development of nanotechnology has led to concerns over their environmental risk. Current analytical techniques are underdeveloped and lack the sensitivity and specificity to characterize these materials in complex environmental and biological matrices. To this end, single particle ICP-MS (spICP-MS) has been developed in the past decade, with the capability to detect and characterize nanomaterials at environmentally relevant concentrations in complex environmental and biological matrices. However, some nanomaterials are composed of elements inherently difficult to quantify by quadrupole ICP-MS due to abundant molecular interferences, such as dinitrogen ions interfering with the detection of silicon. Three approaches aimed at reducing the contribution of these background molecular interferences in the analysis of (28)Si are explored in an attempt to detect and characterize silica colloids. Helium collision cell gases and reactive ammonia gas are investigated for their conventional use in reducing the signal generated from the dinitrogen interference and background silicon ions leaching from glass components of the instrumentation. A new approach brought on by the advent of microsecond dwell times in single particle ICP-MS allows for the detection and characterization of silica colloids without the need for these cell gases, as at shorter dwell times the proportion of signal attributed to a nanoparticle event is greater relative to the constant dinitrogen signal. It is demonstrated that the accurate detection and characterization of these materials will be reliant on achieving a balance between reducing the contribution of the background interference, while still registering the maximum amount of signal generated by the particle event.

5.
Environ Sci Technol ; 49(12): 7179-87, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26000788

RESUMO

Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 µm) investigated but higher than the coarse size fraction (10-2.5 µm). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol.


Assuntos
Aerossóis/química , Atmosfera/química , Umidade , Ferro/química , Tamanho da Partícula , Água do Mar/química , Dióxido de Enxofre/química , Compostos Férricos/química , Óxido Ferroso-Férrico/química , Compostos de Ferro/química , Microscopia Eletrônica de Varredura , Minerais/química , Solubilidade , Espectroscopia por Absorção de Raios X
6.
Sci Total Environ ; 435-436: 253-61, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22858533

RESUMO

Because people spend almost 90% of their time indoors, ambient air monitors may severely underestimate actual exposure to atmospheric particulate matter (PM). Therefore, it becomes increasingly important to better understand the microenvironments where people are spending their time. For preadolescent children, the best estimates of exposure may be inside of their school. In this study, 11 size fractions of PM were collected inside and outside of an elementary school in Flagstaff, AZ, USA. In particles<1 µm (PM1), the total mass indoors was similar to the mass outdoors (indoor:outdoor, I:O, ratio=0.92 ± 0.16). In the PM1-10 fraction, however, the mass concentration inside the school was highly elevated relative to outside the school (I:O ratios=13 ± 3). Mass concentrations of 27 elements were analyzed by ICP-MS. For all metals except for antimony (Sb), the PM1 and PM1-10 I:O ratios are found to be similar to the overall PM mass (near 1 and 13, respectively). In addition, indoor and outdoor particle size distributions reveal a crustal character for every element except Cu, Zn, Pb, and Sb. Therefore, we hypothesize that most of the PM mass inside the school is a result of transport from outside the school followed by resuspension from floors and clothing. In the PM1 fraction, the indoor mass of Sb was 86 times greater than the outdoor mass and had an air concentration of 17 ngm(-3) - greater than many urban areas around the world. Cu:Sb ratios and size distribution functions suggest that the excess source of PM1 indoor Sb results from the suspension of embedded Sb (used as a flame retardant) in the carpeting. This is the first study to observe elevated submicron Sb in schools and further studies are required to determine if this is a widespread health risk.


Assuntos
Poluentes Atmosféricos/análise , Antimônio/análise , Material Particulado/análise , Instituições Acadêmicas , Oligoelementos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Criança , Pré-Escolar , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Humanos , Espectrometria de Massas/métodos , Tamanho da Partícula
7.
Res Rep Health Eff Inst ; (153): 3-75; discussion 77-89, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21409950

RESUMO

New chemical analysis methods for the characterization of atmospheric particulate matter (PM)* samples were developed and demonstrated in order to expand the number of such methods for use in future health studies involving PM. Three sets of methods were, developed, for the analysis (1) of organic tracer compounds in low-volume personal exposure samples (for source apportionment), (2) of trace metals and other trace elements in low-volume personal exposure samples, and (3) of the speciation of the oxidation states of water-soluble iron (Fe), manganese (Mn), and chromium (Cr) in PM samples. The development of the second set of methods built on previous work by the project team, which had in the past used similar methods in atmospheric source apportionment studies. The principal challenges in adapting these methods to the analysis of personal exposure samples were the improvement of detection limits (DLs) and control of the low-level contamination that can compromise personal exposure samples. A secondary goal of our development efforts was to reduce the cost and complexity of the three sets of methods in order to help facilitate their broader use in future health studies. The goals of the project were achieved, and the ability to integrate the methods into existing health studies was demonstrated by way of conducting two pilot studies. The first study involved analysis of trace elements in size-resolved PM samples that had been collected to represent study subjects' personal exposures along with simultaneous measures of indoor and outdoor PM concentrations. The second study involved analysis of the speciation of organic tracer compounds in personal exposure samples, indoor samples, and outdoor samples in order to understand the diesel PM exposure of study subjects in various job classifications in an occupational setting. Both pilot studies used existing samples from. large multi-year health studies and were intended to demonstrate the feasibility and value of using the new chemical analysis methods to better characterize the personal exposure samples. Analysis of the health data and the broader implications of the exposure assessments were not evaluated as part of the present study, but our pilot-study measurements are expected to contribute to investigators' future analyses in the large multi-year health studies. The methods we developed for the low-cost measurement of the oxidation states of Fe, Mn, and Cr in atmospheric PM samples are extremely sensitive and well suited for use in health studies. To demonstrate the utility of these methods, small-scale studies were conducted to characterize the redox cycling of Fe in PM on the time scale of atmospheric transport from source to personal exposure and to provide preliminary data on the atmospheric concentrations of soluble forms of the target metals in selected urban environments (in order to help focus future research seeking to understand the role of metals in human exposure to PM and its adverse health effects). The present report summarizes the methods that were developed and demonstrated to be suitable for use in health studies and provides pilot-scale data that can be used to develop hypotheses and experimental strategies to further enhance the ability of future health studies to elucidate the role of PM, PM sources, and PM components in the observed associations between atmospheric PM and adverse human health outcomes.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Monitoramento Ambiental/instrumentação , Humanos , Compostos Inorgânicos/análise , Compostos Orgânicos/análise , Oligoelementos/análise
8.
Int J Occup Environ Health ; 16(4): 488-507, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21222392

RESUMO

A state-of-the-science review was undertaken to identify and assess sampling and analysis methods to detect and quantify selected nanomaterials (NMs) in the ambient atmosphere. The review is restricted to five types of NMs of interest to the Office of Research and Development Nanomaterial Research Strategy (U.S. Environmental Protection Agency): cerium oxide, titanium dioxide, carbon nanostructures (carbon nanotubes and fullerenes), zero-valent iron, and silver nanoparticles. One purpose was determining the extent to which present-day ultrafine sampling and analysis methods may be sufficient for identifying and possibly quantifying engineered NMs (ENMs) in ambient air. Conventional sampling methods for ultrafines appear to require modifications. For cerium and titanium, background levels from natural sources make measurement of ENMs difficult to quantify. In cases where field studies have been performed, identification from bulk analysis samples have been made. Further development of methods is needed to identify these NMs, especially in specific size fractions of ambient aerosols.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Nanopartículas Metálicas/análise , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/instrumentação , Microscopia de Fluorescência , Tamanho da Partícula , Análise Espectral
9.
Environ Sci Technol ; 43(12): 4327-33, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19603642

RESUMO

Identification of atmospheric iron is a key parameter to understanding the source of iron in urban and remote areas. Atmospheric deposition of desert dust, which also can include an anthropogenic component, is a primary nutrient source for most of the open ocean. To better assess particulate matter (PM) sources specific to iron, we measured the iron isotopic composition of aerosols in two size fractions: PM with aerodynamic diameters less than 2.5 microm and less than 10 microm (PM2.5 and PM10, respectively). Using colocated samplers, atmospheric aerosol samples were collected in the U.S. desert Southwest at a mixed suburban/agricultural site near Phoenix, AZ. The measurements are presented as delta56Fe relative to the IRMM-014 (Institute for Reference Materials and Measurements) standard. Using multiple collector inductively coupled plasma mass spectrometry, we found differences in iron isotopic composition within the PM10 aerosol. Half of the PM10 samples had an iron isotopic signature similar to crustal material (+0.03 per thousand), which implicates wind-blown soil-dust as the primary source. The other PM10 samples showed a lighter iron isotopic composition, centered at -0.18 per thousand. Further analysis showed thatthe lighter iron was associated with winds originating from the southwest. This strongly suggests that there is a different PM10 source in this direction, with a distinct iron isotopic composition. The iron in the PM2.5 samples was usually substantially lighter than the corresponding PM10 samples, which is consistent with coarse and fine particles having different sources, again with distinctively different isotopic compositions. The magnitude of the iron isotopic difference between the PM10 and the PM2.5 size fractions (delta56Fe(PM10) - delta56Fe(PM2.5)) correlated with the PM2.5 concentrations of elements known to be emitted from industrial sources (Pb, Cd, As, V, and Cr). This observation implies that the isotopically light iron is created or emitted alongside industrial processes. Our data demonstrate that iron isotope composition can be a valuable tool in the source-apportionment of iron in atmospheric particles.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental/métodos , Ferro/química , Aerossóis , Atmosfera , Isótopos de Ferro/química , Tamanho da Partícula , Material Particulado/química , Solo/análise
10.
Sci Total Environ ; 407(18): 5104-9, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19540567

RESUMO

The trace metal contents and iron isotope composition of size-resolved aerosols were determined in a parking structure in Tempe, AZ, USA. Particulate matter (PM)<2.5 microm in diameter (the fine fraction) and PM>2.5 microm were collected. Several air toxics (e.g., arsenic, cadmium, and antimony) were enriched above the crustal average, implicating automobiles as an important source. Extremely high levels of fine copper (up to 1000 ng m(-3)) were also observed in the parking garage, likely from brake wear. The iron isotope composition of the aerosols were found to be +0.15+/-0.03 per thousand and +0.18+/-0.03 per thousand for the PM<2.5 microm and PM>2.5 microm fractions, respectively. The similarity of isotope composition indicates a common source for each size fraction. To better understand the source of iron in the parking garage, the elemental composition in four brake pads (two semi-metallic and two ceramic), two tire tread samples, and two waste oil samples were determined. Striking differences in the metallic and ceramic brake pads were observed. The ceramic brake pads contained 10-20% copper by mass, while the metallic brake pads contained about 70% iron, with very little copper. Both waste oil samples contained significant amounts of calcium, phosphorous, and zinc, consistent with the composition of some engine oil additives. Differences in iron isotope composition were observed between the source materials; most notably between the tire tread (average=+0.02 per thousand) and the ceramic brake linings (average=+0.65 per thousand). Differences in isotopic composition were also observed between the metallic (average=+0.18 per thousand) and ceramic brake pads, implying that iron isotope composition may be used to resolve these sources. The iron isotope composition of the metallic brake pads was found to be identical to the aerosols, implying that brake dust is the dominant source of iron in a parking garage.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Isótopos de Ferro/análise , Veículos Automotores
11.
Environ Sci Technol ; 43(7): 2425-30, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19452896

RESUMO

A prototype instrument has been developed for online analysis of water-soluble Fe(II) (WS_Fe(II)) in atmospheric aerosols using a particle-into-liquid-sampler (PILS), which concentrates particles into a small flow of purified water, coupled with a liquid waveguide capillary cell (LWCC) and absorbance spectrophotometryto detect iron-ferrozine colored complexes. The analytical method is highly precise (<3% RSD), and the overall measurement uncertainty and limit of detection for the complete PILS-LWCC system are estimated at 12% and 4.6 ng m(-3), respectively. The online measurements compared well with those of 24 h integrated filter samples collected at two different sampling sites (n=27, R2 = 0.82, slope 0.90 +/- 0.08, and intercept 3.08 +/- 1.99 ng m(-3)). In urban Atlanta, fine particle WS_Fe(II) concentrations measured every 12 min exhibited large variability, ranging from below the detection limit (4.6) to 370 ng m(-3) during a 24 day period in June 2008. This instrument provides new capabilities for investigating the sources and atmospheric processing of fine particle WS_Fe(II) and may prove useful in studies ranging from effects of particle WS_Fe(II) on human health to effects of particle WS_Fe(II) on atmospheric chemistry and ocean biogeochemistry.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Ferro/análise , Água/química , Calibragem , Padrões de Referência , Solubilidade
12.
Anal Bioanal Chem ; 394(1): 255-66, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19242682

RESUMO

Traditional methods for the analysis of trace metals require particulate matter (PM) collected on specific filter substrates. In this paper, methods for elemental analysis of PM collected on substrates commonly used for organic analysis in air quality studies are developed. Polyurethane foam (PUF), polypropylene (PP), and quartz fiber (QF) substrates were first digested in a mixture of HNO(3)/HCl/HF/H(2)O(2) using a microwave digestion system and then analyzed for elements by inductively coupled plasma mass spectrometry. Filter blanks and recoveries for standard reference materials (SRMs) on these substrates were compared with a cellulose (CL) substrate, more commonly used for trace metal analysis in PM. The results show concentrations of filter blanks in the order of QF > PUF > PP > CL with a high variability in PUF and PP blanks relative to QF. Percent recovery of most elements from the SRMs on all substrates are within +/-20% of certified or reference values. QF substrates showed consistent blanks with a reproducibility better than +/-10% for the majority of elements. Therefore, QF substrates were applied to ambient PM collected in a variety of environments from pristine to polluted. Concentrations of field blanks for > or = 18 of 31 elements analyzed on a small section of QF substrate are < or = 25% of the amounts present in samples for urban atmospheres. Results suggest that QF used in a high-volume sampler can be a suitable substrate to quantify trace elements, in addition to organic species and hence reduce logistics and costs in air pollution studies.


Assuntos
Poluição do Ar/análise , Atmosfera/química , Celulose/análise , Polipropilenos/análise , Poliuretanos/análise , Quartzo/análise , Espectrometria de Massas , Padrões de Referência , Reprodutibilidade dos Testes
13.
Environ Sci Technol ; 40(7): 2346-51, 2006 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-16646472

RESUMO

The ability to quantify the chemical and physical forms of transition metals in atmospheric particulate matter (PM) is essential in determining potential human health and ecological effects. A method for the speciation of iron in atmospheric PM has been adapted which involves extraction in a well-defined solution followed by oxidation state specific detection. The method was applied to a suite of environmental aerosols. Ambient atmospheric aerosols in an urban area of St. Louis (the St. Louis-Midwest Supersite) were collected on Teflon substrates and were leached in one of four different solutions: (1) >18.0 Momega water; (2) 140 microM NaCl solution; (3) pH = 7.4 NaHCO3 solution; and (4) pH = 4.3 acetate buffering system. Fe(ll) was determined directly using the Ferrozine method as adapted to liquid waveguide spectrophotometry using a 1 m path-length cell. Fe(lll) was determined similarly after reduction to Fe(ll). It was found that, at low ionic strength, pH exerted a major influence on Fe(ll) solubility with the greatest Fe(ll) concentration consistently found in the pH = 4.3 acetate buffer. Soluble Fe(lll) (as defined by a 0.2 microm filter) varied little with extractant, which implies that most of the Fe(lll) detected was colloidal. To characterize well-defined materials for future reference, NIST standard reference materials were also analyzed for soluble Fe(ll) and Fe(lll). For all SRMs tested, a maximum of 2.4% of the total iron (Urban Dust 1649a) was soluble in pH = 4.3 acetate buffer. For calibration curves covering the ranges of 0.5-20 microg/L Fe(ll), excellent linearity was observed in all leaching solutions with R2 values of > 0.999. Co-located filters were used to test the effect of storage time on iron oxidation state in the ambient particles as a function of time. On two samples, an average Fe(ll) decay rate of 0.89 and 0.57 ng Fe(ll) g(-1) PM day(-1) was determined from the slope of the regression, however this decrease was determined not to be significant over 3 months (95% confidence). As an application of this method to mobile source emissions, size-resolved PM10 samples were collected at the inlet and outlet of the Caldecott Motor Vehicle Tunnel in northern California. These samples indicate that the coarse fraction (PM10-PM2.5) contains almost 50% of the total soluble Fe(ll) in the aerosol.


Assuntos
Aerossóis/química , Ferro/química , Atmosfera , Calibragem , Oxirredução , Padrões de Referência , Reprodutibilidade dos Testes , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...