Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 137(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38032054

RESUMO

The homologous P-type copper-ATPases (Cu-ATPases) ATP7A and ATP7B are the key regulators of copper homeostasis in mammalian cells. In polarized epithelia, upon copper treatment, ATP7A and ATP7B traffic from the trans-Golgi network (TGN) to basolateral and apical membranes, respectively. We characterized the sorting pathways of Cu-ATPases between TGN and the plasma membrane and identified the machinery involved. ATP7A and ATP7B reside on distinct domains of TGN in limiting copper conditions, and in high copper, ATP7A traffics to basolateral membrane, whereas ATP7B traverses common recycling, apical sorting and apical recycling endosomes en route to apical membrane. Mass spectrometry identified regulatory partners of ATP7A and ATP7B that include the adaptor protein-1 complex. Upon knocking out pan-AP-1, sorting of both Cu-ATPases is disrupted. ATP7A loses its trafficking polarity and localizes on both apical and basolateral surfaces in high copper. By contrast, ATP7B loses TGN retention but retained its trafficking polarity to the apical domain, which became copper independent. Using isoform-specific knockouts, we found that the AP-1A complex provides directionality and TGN retention for both Cu-ATPases, whereas the AP-1B complex governs copper-independent trafficking of ATP7B solely. Trafficking phenotypes of Wilson disease-causing ATP7B mutants that disrupts putative ATP7B-AP1 interaction further substantiates the role of AP-1 in apical sorting of ATP7B.


Assuntos
Cobre , Degeneração Hepatolenticular , Animais , Humanos , Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Degeneração Hepatolenticular/genética , Mamíferos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fator de Transcrição AP-1/metabolismo
2.
Traffic ; 24(12): 587-609, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37846526

RESUMO

In hepatocytes, the Wilson disease protein ATP7B resides on the trans-Golgi network (TGN) and traffics to peripheral lysosomes to export excess intracellular copper through lysosomal exocytosis. We found that in basal copper or even upon copper chelation, a significant amount of ATP7B persists in the endolysosomal compartment of hepatocytes but not in non-hepatic cells. These ATP7B-harbouring lysosomes lie in close proximity of ~10 nm to the TGN. ATP7B constitutively distributes itself between the sub-domain of the TGN with a lower pH and the TGN-proximal lysosomal compartments. The presence of ATP7B on TGN-lysosome colocalising sites upon Golgi disruption suggested a possible exchange of ATP7B directly between the TGN and its proximal lysosomes. Manipulating lysosomal positioning significantly alters the localisation of ATP7B in the cell. Contrary to previous understanding, we found that upon copper chelation in a copper-replete hepatocyte, ATP7B is not retrieved back to TGN from peripheral lysosomes; rather, ATP7B recycles to these TGN-proximal lysosomes to initiate the next cycle of copper transport. We report a hitherto unknown copper-independent lysosomal localisation of ATP7B and the importance of TGN-proximal lysosomes but not TGN as the terminal acceptor organelle of ATP7B in its retrograde pathway.


Assuntos
Cobre , Lisossomos , Cobre/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Transporte Proteico , Lisossomos/metabolismo , Exocitose
3.
Metallomics ; 15(9)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37660282

RESUMO

Mutational inactivation of the P-type Cu-ATPase ATP7B interferes with its cellular functions to varying extent leading to varied cellular phenotypes. Wilson's disease (WD) primarily affects organs composed of polarized/differentiated epithelial cells. Therefore, phenotypic variability might differ depending on the polarization/differentiation of the cells. The present study investigates the intracellular stability and localization of ATP7B harboring WD mutations in both unpolarized/undifferentiated and polarized/differentiated cell-based models. Green fluorescent protein (GFP)-ATP7B harboring the WD causing mutations, N41S, S653Y, R778Q, G1061E, H1069Q, S1423N, S1426I, and T1434M, are included for investigation. The C-terminal WD mutations (S1423N, S1426I, and T1434M), exhibit distinct localization and Cu(I) responsive anterograde and retrograde trafficking in undifferentiated/unpolarized vs. differentiated/polarized cells. While basal localization of the S1423N mutant gets corrected in the differentiated glia, its Cu(I) responsive anterograde and retrograde trafficking behavior is not identical to the wild-type. But localization and trafficking properties are completely rescued for the S1426I and T1434M mutants in the differentiated cells. Comprehensive meta-analysis on the effect of the reported C-terminal mutations on patient phenotype and cultured cells demonstrate discrete regions having distinct effects. While mutations in the proximal C-terminus affect ATP7B stability, the present study shows that the distal region dictates cell-specific Trans Golgi Network (TGN) localization and exit. The localization and export properties are corrected in the differentiated cells, which is a plausible mechanism for the milder phenotype exhibited by these mutations. It highlights the critical role of the C-terminus in cell-specific TGN retention and exit of ATP7B.


Assuntos
Degeneração Hepatolenticular , Humanos , Degeneração Hepatolenticular/genética , Complexo de Golgi , Diferenciação Celular/genética , Proteínas de Fluorescência Verde , Mutação
4.
Biomater Sci ; 11(5): 1810-1827, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36655818

RESUMO

Stimuli-responsive cross-linked nanocarriers that can induce lysosomal cell death (LCD) via lysosomal membrane permeabilization (LMP) represent a new class of delivery platforms and have attracted the attention of researchers in the biomedical field. The advantages of such cross-linked nanocarriers are as follows (i) they remain intact during blood circulation; and (ii) they reach the target site via specific receptor-mediated endocytosis leading to the enhancement of therapeutic efficacy and reduction of side effects. Herein, we have synthesized a mannose-6-phosphate (M6P) based amphiphilic ABC type tri-block copolymer having two chains of FDA-approved poly(ε-caprolactone) (PCL) as the hydrophobic block, and poly(S-(o-nitrobenzyl)-L-cysteine) (NBC) acts as the photoresponsive crosslinker block. Two different tri-block copolymers, [(PCL35)2-b-NBC20-b-M6PGP20] and [(PCL35)2-b-NBC15-b-M6PGP20], were synthesized which upon successful self-assembly initially formed spherical uncross-linked "micellar-type" aggregates (UCL-M) and vesicles (UCL-V), respectively. The uncross-linked nanocarriers upon UV treatment for thirty minutes were covalently crosslinked in the middle PNBC block giving rise to the di-sulfide bonds and forming interface cross-linked "micellar-type" aggregates (ICL-M) and vesicles (ICL-V). DLS, TEM, and AFM techniques were used to successfully characterize the morphology of these nanocarriers. The dual stimuli (redox and enzyme) responsiveness of the cross-linked nanocarriers and their trafficking to the lysosome in mammalian cells via receptor-mediated endocytosis was probed using confocal microscopy images. Furthermore, the addition of a chloroquine (CQ, a known lysosomotropic agent) encapsulated cross-linked nanocarrier (CQ@ICL-V) to non-cancerous (HEK-293T) cells and liver (HepG2), and breast cancer cells (MDA-MB-231) was found to initiate lysosomal membrane permeabilization (LMP) followed by lysosomal destabilization which eventually led to lysosomal cell death (LCD). Due to the targeted delivery of CQ to the lysosomes of cancerous cells, almost a 90% smaller amount of CQ was able to achieve similar cell death to CQ alone.


Assuntos
Manosefosfatos , Polímeros , Animais , Polímeros/química , Manosefosfatos/metabolismo , Micelas , Lisossomos/metabolismo , Mamíferos
5.
Hum Mutat ; 43(10): 1408-1429, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35762218

RESUMO

Mutation in ATP7B gene causes Wilson disease (WD) that is characterized by severe hepatic and neurological symptoms. ATP7B localizes at the trans-Golgi Network (TGN) transporting copper to copper-dependent enzymes and traffics in apically targeted vesicles upon intracellular copper elevation. To decode the cellular underpinnings of WD manifestation we investigated copper-responsive polarized trafficking and copper transport activity of 15 WD causing point mutations in ATP7B. Amino-terminal mutations Gly85Val, Leu168Pro, and Gly591Asp displayed TGN and subapical localization whereas, Leu492Ser mislocalized at the basolateral region. The actuator domain mutation Gly875Arg shows retention in the endoplasmic reticulum (ER), Ala874Val and Leu795Phe show partial targeting to TGN and post-Golgi vesicles. The nucleotide-binding domain mutations His1069Gln and Leu1083Phe also display impaired targeting. The C-terminal mutations Leu1373Pro/Arg is arrested at ER but Ser1423Asn shows TGN localization. Transmembrane mutant Arg778Leu resides in ER and TGN while Arg969Gln is exclusively ER localized. Cellular Cu level does not alter the targeting of any of the studied mutations. Mutants that traffic to TGN exhibits biosynthetic function. Finally, we correlated cellular phenotypes with the clinical manifestation of the two most prevalent mutations; the early onset and more aggressive WD caused by Arg778Leu and the milder form of WD caused by mutation His1069Gln.


Assuntos
Proteínas de Transporte de Cátions , ATPases Transportadoras de Cobre , Degeneração Hepatolenticular , Adenosina Trifosfatases/química , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Estudos de Associação Genética , Degeneração Hepatolenticular/genética , Humanos , Mutação
6.
J Biol Chem ; 298(3): 101631, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090891

RESUMO

Copper(I) is an essential metal for all life forms. Though Cu(II) is the most abundant and stable state, its reduction to Cu(I) via an unclear mechanism is prerequisite for its bioutilization. In eukaryotes, the copper transporter-1 (CTR1) is the primary high-affinity copper importer, although its mechanism and role in Cu(II) reduction remain uncharacterized. Here we show that extracellular amino-terminus of human CTR1 contains two methionine-histidine clusters and neighboring aspartates that distinctly bind Cu(I) and Cu(II) preceding its import. We determined that hCTR1 localizes at the basolateral membrane of polarized MDCK-II cells and that its endocytosis to Common-Recycling-Endosomes is regulated by reduction of Cu(II) to Cu(I) and subsequent Cu(I) coordination by the methionine cluster. We demonstrate the transient binding of both Cu(II) and Cu(I) during the reduction process is facilitated by aspartates that also act as another crucial determinant of hCTR1 endocytosis. Mutating the first Methionine cluster (7Met-Gly-Met9) and Asp13 abrogated copper uptake and endocytosis upon copper treatment. This phenotype could be reverted by treating the cells with reduced and nonreoxidizable Cu(I). We show that histidine clusters, on other hand, bind Cu(II) and are crucial for hCTR1 functioning at limiting copper. Finally, we show that two N-terminal His-Met-Asp clusters exhibit functional complementarity, as the second cluster is sufficient to preserve copper-induced CTR1 endocytosis upon complete deletion of the first cluster. We propose a novel and detailed mechanism by which the two His-Met-Asp residues of hCTR1 amino-terminus not only bind copper, but also maintain its reduced state, crucial for intracellular uptake.


Assuntos
Transportador de Cobre 1 , Cobre , Metionina , Cobre/metabolismo , Transportador de Cobre 1/química , Transportador de Cobre 1/metabolismo , Endocitose , Histidina , Humanos , Metionina/química , Metionina/metabolismo
7.
J Biol Chem ; 298(2): 101539, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34958799

RESUMO

Copper (Cu) is essential for all life forms; however, in excess, it becomes toxic. Toxic properties of Cu are known to be utilized by host species against various pathogenic invasions. Leishmania, in both free-living and intracellular forms, exhibits appreciable tolerance toward Cu stress. While determining the mechanism of Cu-stress evasion employed by Leishmania, we identified and characterized a hitherto unknown Cu-ATPase in Leishmania major and established its role in parasite survival in host macrophages. This novel L. major Cu-ATPase, LmATP7, exhibits homology with its orthologs at multiple motifs. In promastigotes, LmATP7 primarily localized at the plasma membrane. We also show that LmATP7 exhibits Cu-dependent expression patterns and complements Cu transport in a Cu-ATPase-deficient yeast strain. Promastigotes overexpressing LmATP7 exhibited higher survival upon Cu stress, indicating efficacious Cu export compared with Wt and heterozygous LmATP7 knockout parasites. We further explored macrophage-Leishmania interactions with respect to Cu stress. We found that Leishmania infection triggers upregulation of major mammalian Cu exporter, ATP7A, in macrophages, and trafficking of ATP7A from the trans-Golgi network to endolysosomes in macrophages harboring amastigotes. Simultaneously, in Leishmania, we observed a multifold increase in LmATP7 transcripts as the promastigote becomes established in macrophages and morphs to the amastigote form. Finally, overexpressing LmATP7 in parasites increases amastigote survivability within macrophages, whereas knocking it down reduces survivability drastically. Mice injected in their footpads with an LmATP7-overexpressing strain showed significantly larger lesions and higher amastigote loads as compared with controls and knockouts. These data establish the role of LmATP7 in parasite infectivity and intramacrophagic survivability.


Assuntos
Cobre , Leishmania major , Leishmaniose , ATPases do Tipo-P , Animais , Cobre/metabolismo , Leishmania major/enzimologia , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Mamíferos , Camundongos , ATPases do Tipo-P/metabolismo
8.
J Cell Sci ; 133(24)2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33268466

RESUMO

The Wilson disease protein, ATP7B maintains copper (herein referring to the Cu+ ion) homeostasis in the liver. ATP7B traffics from trans-Golgi network to endolysosomes to export excess copper. Regulation of ATP7B trafficking to and from endolysosomes is not well understood. We investigated the fate of ATP7B after copper export. At high copper levels, ATP7B traffics primarily to acidic, active hydrolase (cathepsin-B)-positive endolysosomes and, upon subsequent copper chelation, returns to the trans-Golgi network (TGN). At high copper, ATP7B colocalizes with endolysosomal markers and with a core member of retromer complex, VPS35. Knocking down VPS35 did not abrogate the copper export function of ATP7B or its copper-responsive anterograde trafficking to vesicles; rather upon subsequent copper chelation, ATP7B failed to relocalize to the TGN, which was rescued by overexpressing wild-type VPS35. Overexpressing mutants of the retromer complex-associated proteins Rab7A and COMMD1 yielded a similar non-recycling phenotype of ATP7B. At high copper, VPS35 and ATP7B are juxtaposed on the same endolysosome and form a large complex that is stabilized by in vivo photoamino acid labeling and UV-crosslinking. We demonstrate that retromer regulates endolysosome to TGN trafficking of copper transporter ATP7B in a manner that is dependent upon intracellular copper.


Assuntos
Proteínas de Transporte de Cátions , Degeneração Hepatolenticular , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/genética , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Endossomos/metabolismo , Degeneração Hepatolenticular/genética , Humanos
9.
J Membr Biol ; 253(5): 459-468, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32975619

RESUMO

Copper is crucial for carrying out normal physiological functions in all higher life forms. Copper Transporter 1 (CTR1) is the high-affinity copper importer found in all eukaryotic organisms. The copper transporter family primarily comprises ~ six members (CTR1-6) and the related members share high sequence homology with CTR. However, with the exception of CTR1, not all six CTRs are present in every organism. Despite having a simple trimeric channel structure, CTR1 and other members exhibit some unique regulatory properties. In the present review, we attempt to understand the diversity and similarity of regulation and functioning of the members of this copper transporter family.


Assuntos
Proteínas de Transporte de Cobre/química , Proteínas de Transporte de Cobre/metabolismo , Cobre/química , Cobre/metabolismo , Animais , Evolução Biológica , Transporte Biológico , Proteínas de Transporte de Cobre/genética , Regulação da Expressão Gênica , Humanos , Família Multigênica , Filogenia , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
10.
Inorg Chem ; 59(14): 10262-10274, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32585099

RESUMO

We report [RuII(L)(η6-p-cym)Cl] (1 and 2) and [PtII(L)(DMSO)Cl] (3 and 4) complexes, where L is a chelate imine ligand derived from chloroethylamine and salicylaldehyde (HL1) or o-vanillin (HL2). The complexes were characterized by single-crystal X-ray diffraction and other analytical techniques. The 1H nuclear magnetic resonance data show that both the Ru(II) and Pt(II) complexes start forming the aquated complex within an hour. The aquated complexes are stable at least up to 24 h. The complexes bind to the N7 of the model nucleobase 9-ethylguanine (9-EtG). Interaction with calf thymus (CT) DNA shows moderate binding interactions with binding constants, Kb (3.7 ± 1.2) × 103 M-1 and (4.3 ± 1.9) × 103 M-1 for 1 and 3, respectively. The complexes exhibit significant antiproliferative activity against human pancreas ductal adenocarcinoma (Mia PaCa-2), triple negative metastatic breast adenocarcinoma (MDA-MB-231), hepatocellular carcinoma (Hep G2), and colorectal adenocarcinoma (HT-29) cell lines. The studies show that with the same ligand the Pt(II) complexes are more potent than the Ru(II) complexes. The in vitro potencies of all the complexes toward pancreatic cancer cell line MIA PaCa-2 are more than cisplatin (CDDP). The Pt(II) and Ru(II) complexes show similar binding constants with CT-DNA, but the reactivity of the Pt(II) complex 3 with 9-EtG is faster and their overall cell killing pathways are different. This is evident from the arrest of the cell cycle by the Ru(II) complex 1 in the G2/M phase in contrast to the SubG1 phase arrest by the Pt(II) complex 3. The immunoblot study shows that 3 increases cyclin D and Bcl-2 expression in MDA-MB-231 due to the SubG1 phase arrest where these proteins express in greater quantities. However, both 1 and 3 kill in the apoptotic pathway via dose-dependent activation of caspase 3. Complex 3 depolarizes the mitochondria more efficiently than 1, suggesting its higher preference for the intrinsic pathway of apoptosis. Our work reveals that the same bidentate ligand with a change of the metal center, viz, Pt(II) or Ru(II), imparts significant variation in cytotoxic dosage and pathway of action due to specific intrinsic properties of a metal center (viz, coordination geometry, solution stability) manifested in a complex.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , DNA/química , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Ligantes , Platina/química , Rutênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...