Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Int J Surg ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967503

RESUMO

BACKGROUND: COVID-19 has presented significant obstacles to healthcare. Stem cell therapy, particularly mesenchymal stem cells (MSCs), has emerged as a potential treatment modality due to its immunomodulatory and regenerative properties. This umbrella review aims to synthesize current evidence from systematic reviews on the safety and efficacy of stem cell therapy in COVID-19 treatment. METHODS: A thorough literature search was performed across Embase, PubMed, Cochrane and Web of Science from December 2019 to February 2024. Systematic reviews focusing on the use of stem cell therapy for COVID-19 were included. Evidence was synthesized by meta-analysis using R software (V 4.3) for each outcome. The certainty of evidence was assessed using the GRADE approach. RESULTS: A total of 24 systematic reviews were included. Stem cell therapy was associated with reduced mortality (RR 0.72, 95% CI: 0.60-0.86); shorter hospital stays (MD -4.00 days, 95% CI: -4.68 to -3.32), and decreased need for invasive ventilation (RR 0.521, 95% CI: 0.320 to 0.847). Symptom remission rates improved (RR 1.151, 95% CI: 0.998 to 1.330), and a reduction in CRP levels was noted (SMD -1.198, 95% CI: -2.591 to 0.195), albeit with high heterogeneity. For adverse events, no significant differences were found between stem cell therapy and standard care (RR 0.87, 95% CI: 0.607 to 1.265). The certainty of evidence ranged from low to moderate. CONCLUSION: Stem cell therapy demonstrates a potential benefit in treating COVID-19, particularly in reducing mortality and hospital stay duration. Despite these promising findings, the evidence is varied, and future large-scale randomized trials are essential to confirm the efficacy and optimize the therapeutic protocols for stem cell therapy in the management of the disease. The safety profile is encouraging, with no significant increase in adverse events, suggesting a viable avenue for treatment expansion.

2.
Heliyon ; 10(11): e32257, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38947436

RESUMO

New 3-furan-1-thiophene-based chalcones were synthesized, characterized and pharmacologically evaluated as antibacterial and anticancer agents against two bacterial species; Gram-positive (Streptococcus pyogenes) and Gram-negative (Pseudomonas aeruginosa). All tested final compounds were active against the two bacterial species; S. pyogenes and P . aeruginosa. Especially compound AM4 showed large inhibition zone (27.13 and 23.30 mm), respectively. Using the DPPH assay, the new chalcones were evaluated for their free radical scavenging activity and found to reach up to 90 %, accomplished at a test concentration of 200 µg/mL. Furthermore, the chalcone derivatives were investigated against two breast cell lines; MCF-7 (cancerous) and MCF-10A (non-cancerous). Compound AM4 showed potent anticancer activity (IC50 = 19.354 µg/mL) in comparison to the other tested chalcone derivatives. In silico study was achieved using the PyRx AutoDock Vina software (0.8) to study the interaction types between the new hits and the binding sites of targeted proteins; glucosamine-6-phosphate synthase and tubulin, the target for antibacterial and anticancer drugs, respectively. Based on the molecular docking results the tested chalcones bind to the active pocket of the respective proteins, which support the in vitro results. In conclusion, 3-furan-1-thiophene-based chalcones could serve as new hits in the discovery of novel anticancer and/or antibacterial drugs.

3.
Int J Biol Macromol ; 274(Pt 1): 133383, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914395

RESUMO

In this report, we present a dual crosslinking hydrogel fiber made from polyamine saccharides chitosan (CS), synthesized through UV polymerization. This process utilizes Irgacure 2959 and N,N'-Methylenebisacrylamide (MBAA) as initiators, followed by immersion in an aluminum chloride (AlCl3) solution. The resulting hydrogel incorporates a dual crosslinking mechanism, quantitatively studied via Nuclear Magnetic Resonance (NMR) spectroscopy. This mechanism involves chemical crosslinking through radical graft polymerization of acrylamide and acrylic acid onto CS in the presence of MBAA, and physical crosslinking through hydrogen bonding interactions between P(AAm-co-AA) and a metal coordination bond. The mechanical properties of the hydrogel fiber enable it to withstand stresses up to 656 kPa and strains exceeding 300 %. Additionally, the hydrogel fiber exhibits conductivity at 1.96 Scm-1. Serving as a multifunctional material, it acts as a strain sensor and finds utility in optics. Remarkably, it demonstrates the capability to detect human motions such as finger bending and minor deformations like vibrations of the vocal cords. Furthermore, its ability to guide dynamic light makes it promising for optical applications. Consequently, this multifunctional hydrogel fiber emerges as a highly promising candidate for diverse applications in fields such as bioengineering and electronics.

4.
Cell Biochem Biophys ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916791

RESUMO

Conventional cancer therapies can have significant adverse effects as they are not targeted to cancer cells and may damage healthy cells. Single-stranded oligonucleotides assembled in a particular architecture, known as aptamers, enable them to attach selectively to target areas. Usually, they are created by Systematic Evolution of Ligand by Exponential enrichment (SELEX), and they go through a rigorous pharmacological revision process to change their therapeutic half-life, affinity, and specificity. They could thus offer a viable substitute for antibodies in the targeted cancer treatment market. Although aptamers can be a better choice in some situations, antibodies are still appropriate for many other uses. The technique of delivering aptamers is simple and reasonable, and the time needed to manufacture them is relatively brief. Aptamers do not require animals or an immune response to be produced, in contrast to antibodies. When used as a medication, aptamers can directly suppress tumor cells. As an alternative, they can be included in systems for targeted drug delivery that administer medications specifically to tumor cells while reducing toxicity to healthy cells. The most recent and cutting-edge methods for treating gastrointestinal (GI) tract cancer with aptamers will be covered in this review, with a focus on targeted therapy as a means of conquering resistance to traditional medicines.

5.
Front Neurosci ; 18: 1422912, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903602

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of motor neurons characterized by muscle weakness, muscle twitching, and muscle wasting. ALS is regarded as the third-most frequent neurodegenerative disease, subsequent to Alzheimer's disease (AD) and Parkinson's disease (PD). The World Health Organization (WHO) in 2007 declared that prolonged use of statins may induce development of ALS-like syndrome and may increase ALS risk. Subsequently, different studies have implicated statins in the pathogenesis of ALS. In contrast, results from preclinical and clinical studies highlighted the protective role of statins against ALS neuropathology. Recently, meta-analyses and systematic reviews illustrated no association between long-term use of statins and ALS risk. These findings highlighted controversial points regarding the effects of statins on ALS pathogenesis and risk. The neuroprotective effects of statins against the development and progression of ALS may be mediated by regulating dyslipidemia and inflammatory changes. However, the mechanism for induction of ALS neuropathology by statins may be related to the dysregulation of liver X receptor signaling (LXR) signaling in the motor neurons and reduction of cholesterol, which has a neuroprotective effect against ALS neuropathology. Nevertheless, the exact role of statins on the pathogenesis of ALS was not fully elucidated. Therefore, this narrative review aims to discuss the role of statins in ALS neuropathology.

6.
Autophagy ; : 1-12, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38873924

RESUMO

Macroautophagy/autophagy is an essential degradation process that removes abnormal cellular components, maintains homeostasis within cells, and provides nutrition during starvation. Activated autophagy enhances cell survival during stressful conditions, although overactivation of autophagy triggers induction of autophagic cell death. Therefore, early-onset autophagy promotes cell survival whereas late-onset autophagy provokes programmed cell death, which can prevent disease progression. Moreover, autophagy regulates pancreatic ß-cell functions by different mechanisms, although the precise role of autophagy in type 2 diabetes (T2D) is not completely understood. Consequently, this mini-review discusses the protective and harmful roles of autophagy in the pancreatic ß cell and in the pathophysiology of T2D.

7.
J Family Med Prim Care ; 13(3): 845-850, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38736827

RESUMO

Introduction: Mental disorders are highly prevalent and affect people across all regions of the world. The State of Jammu and Kashmir has been witness to a conflict for about three decades. Little is known about the extent of mental disorders in Kashmir. There was a dire need to estimate the prevalence of mental disorders among the rural population of Kashmir. The study was undertaken to estimate the point prevalence of specific mental disorders in rural population of Kashmir, sociodemographic correlates of mental disorders and to assess the service utilization in individuals with mental disorders. Materials and Methods: Community-based survey carried out in rural districts of Kashmir using a mixed sampling technique. The survey was conducted in six blocks of two districts (Pulwama and Baramulla) of Kashmir. Mini-International Neuropsychiatric Interview (MINI) for psychiatric morbidity was used. Appropriate statistical methods were applied. Results: In total, 11.3% of adult population suffers from mental illness in the valley. As compared to males (8.4%), females had a higher prevalence (12.9%). Depressive disorders (8.4%) were the most common psychiatric disorders, followed by anxiety disorders (5.1%). Only 12.6% of patients suffering from mental disorders had sought treatment for their illnesses. Conclusion: The findings of this study have cleared many doubts and indicated the prevalence of 10 common mental health disorders in the general population as well as among different socioeconomic groups in Kashmir. This study has indicated low levels of treatment sought by people with mental illness.

8.
PLoS One ; 19(5): e0304179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820542

RESUMO

This study investigates the molecular prevalence and phylogenetic characteristics of two prominent blood-borne pathogens, Toxoplasma gondii (T. gondii) and Plasmodium spp., in common quails (Coturnix coturnix) sampled from both wild (N = 236) and farmed (N = 197) populations across four districts (Layyah, Dera Ghazi Khan, Lahore, and Multan) in Punjab, Pakistan, during the hunting seasons from 2021 to 2023. Additionally, the impact of these pathogens on the complete blood count (CBC) of the hosts is examined. Out of 433 quails tested, 25 (5.8%) exhibited amplification of the internal transcribed spacer (ITS-1) gene for T. gondii, while 15 (3.5%) showed amplification of the Cytochrome b gene for Plasmodium spp. A risk factor analysis indicated that the prevalence of both pathogens was not confined to specific sampling sites or bird sexes (P > 0.05). District-wise analysis highlighted that hens were more susceptible to both T. gondii and Plasmodium spp. infections than cocks. Wild quails exhibited a higher susceptibility to T. gondii compared to farmed birds. Significant CBC variations were recorded in infected birds as compared to uninfected ones. BLAST analysis of generated sequences has confirmed the identity of recovered PCR amplicons as T. gondii and Plasmodium relictum. Phylogenetic analysis revealed that Pakistani isolates clustered with those reported from various countries globally. This study provides the first documentation of T. gondii and Plasmodium sp. infections in Pakistani quails, underscoring the need for detailed investigations across different regions to enhance our understanding of infection rates and the zoonotic potential of these parasites.


Assuntos
Filogenia , Plasmodium , Toxoplasma , Toxoplasmose Animal , Animais , Paquistão/epidemiologia , Toxoplasma/genética , Plasmodium/genética , Plasmodium/isolamento & purificação , Plasmodium/classificação , Prevalência , Toxoplasmose Animal/epidemiologia , Toxoplasmose Animal/parasitologia , Coturnix/parasitologia , Feminino , Malária Aviária/epidemiologia , Malária Aviária/parasitologia , Masculino , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/epidemiologia
9.
Adv Med Educ Pract ; 15: 419-430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774481

RESUMO

Introduction: A comprehensive approach to assessment is essential to ensure that all students' learning competencies are measured accurately. Therefore, multiple methods of assessment have been developed to address this matter. This Study aims to assess the correlation between health sciences students' performance on theoretical and practical exams. Methods: A correlational study design was conducted. The academic performance of 352 students across theoretical/practical courses was tested. SPSS version 29.0 was used for analysis. Spearman's rho correlation (Rs), Wilcoxon, and Mann Whitney were computed at p<0.05. Results: The theoretical performance was strongly correlated with the practical performance of all programs pooled together (Rs (352) = 0.67, p<0.001). Also, there was a strong correlation between theoretical and practical performance for male students (Rs (181) = 0.72, p<0.001), while a moderate correlation for female students (Rs (171) = 0.53, p<0.001). Mann-Whitney test revealed significant mean performance difference by gender both at theoretical (U = 9284, p<0.0001) and practical (U = 11,373, p < 0.0001) levels. Conclusion: There were significant correlations between theoretical knowledge and practical skills across the selected four programs.; The mean student's performance was better in the practical skills than in the theoretical knowledge assessment, and female students surpassed male students in both practical and theoretical assessments in the four programs offered to both genders.

10.
J Mol Graph Model ; 131: 108792, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38797085

RESUMO

In the current quantum chemical study, indacenodithiophene donor core-based the end-capped alterations of the reference chromophore BTR drafted eight A2-A1-D-A1-A2 type small non-fullerene acceptors. All the computational simulations were executed under MPW1PW91/6-31G (d, p) level of DFT. The UV-Vis absorption, open circuit voltage, electron affinity, ionization potential, the density of states, reorganization energy, orbital analysis, and non-covalent interactions were studied and compared with BTR. Several molecules of our modeled series BT1-BT8 have shown distinctive features that are better than those of the BTR. The open circuit voltage (VOC) of BT5 has a favorable impact, allowing it to replace BTR in the field of organic solar cells. The charge carrier motilities for proposed molecules generated extraordinary findings when matched to the reference one (BTR). Further charge transmission was confirmed by creating the complex with a PM6 donor molecule. The remarkable dipole moment contributes to the formation of non-covalent bond interactions with chloroform, resulting in superior charge mobility. Based on these findings, it can be said that every tailored molecule has the potential to surpass chromophore molecule (BTR) in OSCs. So, all tailored molecules may enhance the efficiency of photovoltaic cells due to the involvement of potent terminal electron-capturing acceptor2 moieties. Considering these obtained results, these newly presented molecules can be regarded for developing efficient solar devices in the future.

11.
Diabetes Obes Metab ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802993

RESUMO

Depression is a mood disorder that may increase risk for the development of insulin resistance (IR) and type 2 diabetes (T2D), and vice versa. However, the mechanistic pathway linking depression and T2D is not fully elucidated. The aim of this narrative review, therefore, was to discuss the possible link between depression and T2D. The coexistence of T2D and depression is twice as great compared to the occurrence of either condition independently. Hyperglycaemia and dyslipidaemia promote the incidence of depression by enhancing inflammation and reducing brain serotonin (5-hydroxytryptamine [5HT]). Dysregulation of insulin signalling in T2D impairs brain 5HT signalling, leading to the development of depression. Furthermore, depression is associated with the development of hyperglycaemia and poor glycaemic control. Psychological stress and depression promote the development of T2D. In conclusion, T2D could be a potential risk factor for the development of depression through the induction of inflammatory reactions and oxidative stress that affect brain neurotransmission. In addition, chronic stress in depression may induce the development of T2D through dysregulation of the hypothalamic-pituitary-adrenal axis and increase circulating cortisol levels, which triggers IR and T2D.

12.
Sci Rep ; 14(1): 9545, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664493

RESUMO

An essential research area for scientists is the development of high-performing, inexpensive, non-toxic antibacterial materials that prevent the transfer of bacteria. In this study, pure Bi2WO6 and Bi2WO6/MWCNTs nanocomposite were prepared by hydrothermal method. A series of characterization results by using XRD FTIR, Raman, FESEM, TEM, and EDS analyses, reveal the formation of orthorhombic nanoflakes Bi2WO6 by the addition of NaOH and pH adjustment to 7. Compared to pure Bi2WO6, the Bi2WO6/MWCNTs nanocomposite exhibited that CNTs are efficiently embedded into the structure of Bi2WO6 which results in charge transfer between metal ion electrons and the conduction or valence band of Bi2WO6 and MWCNTs and result in shifting to longer wavelength as shown in UV-visible and PL. The results confirmed that MWCNTs are stuck to the surface of the microflowers, and some of them embedded inside the Bi2WO6 nanoflakes without affecting the structure of Bi2WO6 nanoflakes as demonstrated by TEM. In addition, Pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite were tested against P. mirabilis and S. mutans., confirming the effect of addition MWCNTs materials had better antibacterial activity in opposition to both bacterial strains than pure Bi2WO6. Besides, pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite tested for cytotoxicity against lung MTT test on Hep-G2 liver cancer cells, and flow-cytometry. Results indicated that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have significant anti-cancer efficacy against Hep-G2 cells in vitro. In addition, the findings demonstrated that Bi2WO6 and Bi2WO6/MWCNTs triggered cell death via increasing ROS. Based on these findings, it appears that pure Bi2WO6 and the Bi2WO6/MWCNTs nanocomposite have the potential to be developed as nanotherapeutics for the treatment of bacterial infections, and liver cancer.


Assuntos
Antibacterianos , Antineoplásicos , Bismuto , Nanocompostos , Compostos de Tungstênio , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Bismuto/química , Bismuto/farmacologia , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Nanotubos de Carbono/química , Testes de Sensibilidade Microbiana , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2
13.
Nutrients ; 16(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542677

RESUMO

This study examined the effect of creatine nitrate and caffeine alone and combined on exercise performance and cognitive function in resistance-trained athletes. In a double-blind, randomized crossover trial, twelve resistance-trained male athletes were supplemented with 7 days of creatine nitrate (5 g/day), caffeine (400 mg/day), and a combination of creatine nitrate and caffeine. The study involved twelve resistance-trained male athletes who initially provided a blood sample for comprehensive safety analysis, including tests for key enzymes and a lipid profile, and then performed standardized resistance exercises-bench and leg press at 70% 1RM-and a Wingate anaerobic power test. Cognitive function and cardiovascular responses were also examined forty-five minutes after supplementation. Creatine nitrate and caffeine that were co-ingested significantly enhanced cognitive function, as indicated by improved scores in the Stroop Word-Color Interference test (p = 0.04; effect size = 0.163). Co-ingestion was more effective than caffeine alone in enhancing cognitive performance. In contrast, no significant enhancements in exercise performance were observed. The co-ingestion of creatine nitrate and caffeine improved cognitive function, particularly in cognitive interference tasks, without altering short-term exercise performance. Furthermore, no adverse events were reported. Overall, the co-ingestion of creatine nitrate and caffeine appears to enhance cognition without any reported side effects for up to seven days.


Assuntos
Cafeína , Nitratos , Humanos , Masculino , Cafeína/farmacologia , Cognição , Creatina/farmacologia , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Exercício Físico , Nitratos/farmacologia
14.
Ageing Res Rev ; 95: 102233, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38360180

RESUMO

The ketogenic diet (KD) is a low-carbohydrate, adequate protein and high-fat diet. KD is primarily used to treat refractory epilepsy. KD was shown to be effective in treating different neurodegenerative diseases. Alzheimer disease (AD) is the first common neurodegenerative disease in the world characterized by memory and cognitive impairment. However, the underlying mechanism of KD in controlling of AD and other neurodegenerative diseases are not discussed widely. Therefore, this review aims to revise the fundamental mechanism of KD in different neurodegenerative diseases focusing on the AD. KD induces a fasting-like which modulates the central and peripheral metabolism by regulating mitochondrial dysfunction, oxidative stress, inflammation, gut-flora, and autophagy in different neurodegenerative diseases. Different studies highlighted that KD improves AD neuropathology by regulating synaptic neurotransmission and inhibiting of neuroinflammation and oxidative stress. In conclusion, KD improves cognitive function and attenuates the progression of AD neuropathology by reducing oxidative stress, mitochondrial dysfunction, and enhancing neuronal autophagy and brain BDNF.


Assuntos
Doença de Alzheimer , Dieta Cetogênica , Doenças Mitocondriais , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Doenças Mitocondriais/metabolismo
15.
Autophagy ; 20(7): 1473-1482, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38346408

RESUMO

Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ) that results from autoantibodies against nicotinic acetylcholine receptors (nAchRs) at NMJs. These autoantibodies are mainly originated from autoreactive B cells that bind and destroy nAchRs at NMJs preventing nerve impulses from activating the end-plates of skeletal muscle. Indeed, immune dysregulation plays a crucial role in the pathogenesis of MG. Autoreactive B cells are increased in MG due to the defect in the central and peripheral tolerance mechanisms. As well, autoreactive T cells are augmented in MG due to the diversion of regulatory T (Treg) cells or a defect in thymic anergy leading to T cell-mediated autoimmunity. Furthermore, macroautophagy/autophagy, which is a conserved cellular catabolic process, plays a critical role in autoimmune diseases by regulating antigen presentation, survival of immune cells and cytokine-mediated inflammation. Abnormal autophagic flux is associated with different autoimmune disorders. Autophagy regulates the connection between innate and adaptive immune responses by controlling the production of cytokines and survival of Tregs. As autophagy is involved in autoimmune disorders, it may play a major role in the pathogenesis of MG. Therefore, this mini-review demonstrates the potential role of autophagy and autophagy activators in MG.Abbreviations: Ach, acetylcholine; Breg, regulatory B; IgG, immunoglobulin G; MG, myasthenia gravis; NMJ, neuromuscular junction; ROS, reactive oxygen species; Treg, regulatory T; Ubl, ubiquitin-like.


Assuntos
Autofagia , Miastenia Gravis , Miastenia Gravis/imunologia , Miastenia Gravis/patologia , Miastenia Gravis/metabolismo , Humanos , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Autoanticorpos/imunologia
16.
Phys Chem Chem Phys ; 26(4): 3229-3239, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193862

RESUMO

Perovskites composed of inorganic cesium (Cs) halide provide a route to thermally resistant solar cells. Nevertheless, the use of hole-transporting layers (HTLs) with hydrophobic additives is constrained by moisture-induced phase deterioration. Due to significant electrical loss, dopant-free HTLs are unable to produce practical solar cells. In this article, we designed a two-dimensional 1,3,6,8-tetrakis[5-(N,N-di(p-(methylthio)phenyl)amino-p-phenyl)-thiophen-2-yl]pyrene (termed SMe-TATPyr) molecule as a new HTL to regulate electrical loss in lead-free perovskite solar cells (PSCs). We optimized the power conversion efficiency (PCE) of PSCs based on mixed tin (Sn)/germanium (Ge) halide perovskite (CsSn0.5Ge0.5I3) by exploring different factors, such as the deep and shallow levels of defects, density of states at the valence band (NV), thickness of the perovskite film, p-type doping concentration (NA) of HTL, the series and shunt resistances, and so on. We carried out comparative research by employing the 1D-SCAPS (a solar cell capacitance simulator) analysis tool. Through optimization of the PSC, we obtained the highest parameters in the simulated solar cell structure of fluorine tin oxide (FTO)/titanium dioxide (TiO2)/CsSn0.5Ge0.5I3/SMe-TATPyr/gold (Au), and the PCE reached up to 20% with a fill factor (FF) of 81.89%.

17.
ACS Omega ; 9(3): 3554-3564, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284009

RESUMO

The present study aimed to develop and characterize liposome nanocarriers based on γ oryzanol and evaluate their potential in vitro and in vivo toxicity and antioxidant effects. The liposomes were physicochemically characterized using various techniques, including dynamic light scattering (DLS) for size and polydispersity index (PDI) measurements and ζ-potential analysis. The in vitro toxicity assessments were performed using hemolysis and MTT assays on the HS5 cell line. In vivo, acute oral toxicity was evaluated by using LD50 assays in mice. Additionally, antioxidant activity was assessed through biochemical analysis of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and liver tissue catalase, malondialdehyde (MDA), and glutathione (GSH) levels. The results revealed that the liposomes exhibited a uniform and spherical morphology with suitable physicochemical properties for drug delivery applications. The in vitro cytotoxicity and hemolysis assays and the in vivo LD50 experiment indicated the potential safety of γ oryzanol liposomes, especially at lower concentrations. In addition, the assessment of liver enzymes, i.e., ALT and AST, and the antioxidant markers further revealed the safety of the formulation, particularly for the liver as a highly sensitive soft organ. Overall, the liposome nanocarriers based on γ oryzanol were successfully formulated and expressed potential safety, supporting their application for the purposes of drug delivery and therapeutic interventions, particularly for hepatocellular and antioxidant therapies; however, further investigations for preclinical and clinical studies could be the future prospects for liposome nanocarriers based on γ oryzanol to explore the safety and efficacy of these nanocarriers in various disease models and clinical settings.

18.
Ageing Res Rev ; 94: 102200, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38237699

RESUMO

Parkinson disease (PD) is a common brain neurodegenerative disease due to progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). Of note, the cardio-metabolic disorders such as hypertension are adversely affect PD neuropathology through exaggeration of renin-angiotensin system (RAS). The RAS affects the stability of dopaminergic neurons in the SNpc, and exaggeration of angiotensin II (AngII) is implicated in the development and progression of PD. RAS has two axes classical including angiotensin converting enzyme (ACE)/AngII/AT1R, and the non-classical axis which include ACE2/Ang1-7/Mas receptor, AngIII, AngIV, AT2R, and AT4R. It has been shown that brain RAS is differs from that of systemic RAS that produce specific neuronal effects. As well, there is an association between brain RAS and PD. Therefore, this review aims to revise from published articles the role of brain RAS in the pathogenesis of PD focusing on the non-classical pathway, and how targeting of this axis can modulate PD neuropathology.


Assuntos
Hipertensão , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Sistema Renina-Angiotensina/fisiologia , Angiotensina II/metabolismo , Peptidil Dipeptidase A/metabolismo
19.
Ageing Res Rev ; 95: 102209, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38286334

RESUMO

Vascular Parkinsonism (VP) is clinical term represents a progressive ischemic changes and subcortical lacunar infarct leading to Parkinsonism mainly in the lower limbs so called lower body Parkinsonism. The VP neuropathology is differed from that of PD neuropathology which rarely associated with basal ganglion lesions. Dopamine transporters are normal in VP but are highly reduced in PD, and dopaminergic agonists had no effective role on VP. The neuropathological mechanisms of VP are related to vascular injury which induces the interruption of the neural connection between basal ganglion and cerebral cortex. Hyperlipidemia and other cardiometabolic risk factors augment VP risk and the related neuropathology. Targeting of these cardiometabolic disorders by lipid-lowering statins may be effective in the management of VP. Therefore, this mini-review aims to clarify the possible role of statins in the management of VP. Statins have neuroprotective effects against different neurodegenerative diseases by anti-inflammatory, antioxidant and antithrombotic effects with enhancement of endothelial function. In conclusion, statins can prevent and treat VP by inhibiting inflammatory and oxidative stress disorders, mitigating of white matter hyperintensities and improving of neuronal signaling pathways. Additional preclinical, clinical trials and prospective studies are warranted in this regard.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doença de Parkinson Secundária , Transtornos Parkinsonianos , Doenças Vasculares , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Transtornos Parkinsonianos/etiologia , Transtornos Parkinsonianos/patologia
20.
Mol Cell Biochem ; 479(4): 975-991, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37266747

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease developed due to the degeneration of dopaminergic neurons in the substantia nigra. There is no single effective treatment in the management of PD. Therefore, repurposing effective and approved drugs like metformin could be an effective strategy for managing PD. However, the mechanistic role of metformin in PD neuropathology was not fully elucidated. Metformin is an insulin-sensitizing agent used as a first-line therapy in the management of type 2 diabetes mellitus (T2DM) and has the ability to reduce insulin resistance (IR). Metformin may have a beneficial effect on PD neuropathology. The neuroprotective effect of metformin is mainly mediated by activating adenosine monophosphate protein kinase (AMPK), which reduces mitochondrial dysfunction, oxidative stress, and α-synuclein aggregation. As well, metformin mitigates brain IR a hallmark of PD and other neurodegenerative diseases. However, metformin may harm PD neuropathology by inducing hyperhomocysteinemia and deficiency of folate and B12. Therefore, this review aimed to find the potential role of metformin regarding its protective and detrimental effects on the pathogenesis of PD. The mechanistic role of metformin in PD neuropathology was not fully elucidated. Most studies regarding metformin and its effectiveness in PD neuropathology were observed in preclinical studies, which are not fully translated into clinical settings. In addition, metformin effect on PD neuropathology was previously clarified in T2DM, potentially linked to an increasing PD risk. These limitations hinder the conclusion concerning the therapeutic efficacy of metformin and its beneficial and detrimental role in PD. Therefore, as metformin does not cause hypoglycemia and is a safe drug, it should be evaluated in non-diabetic patients concerning PD risk.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Doenças Neurodegenerativas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neurônios Dopaminérgicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...