Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 24(10): e14021, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37144947

RESUMO

PURPOSES: To report our experience in a prospective study of implementing a transperineal ultrasound system to monitor intra-fractional prostate motion for prostate stereotactic body radiotherapy (SBRT). MATERIAL AND METHODS: This IRB-approved prospective study included 23 prostate SBRT patients treated between 04/2016 and 11/2019 at our institution. The prescription doses were 36.25 Gy to the Low-Dose planning target volume (LD-PTV) and 40 Gy to the High-Dose PTV (HD-PTV) in five fractions with 3 mm planning margins. The transperineal ultrasound system was successfully used in 110 of the 115 fractions. For intra-fraction prostate motion, the real-time prostate displacements measured by ultrasound were exported for analysis. The percentage of time prostate movement exceeded a 2 mm threshold was calculated for each fraction of all patients. T-test was used for all statistical comparisons. RESULTS: Ultrasound image quality was adequate for prostate delineation and prostate motion tracking. The setup time for each fraction under ultrasound-guided prostate SBRT was 15.0 ± 4.9 min and the total treatment time per fraction was 31.8 ± 10.5 min. The presence of an ultrasound probe did not compromise the contouring of targets or critical structures. For intra-fraction motion, prostate movement exceeded 2 mm tolerance in 23 of 110 fractions for 11 of 23 patients. For all fractions, the mean percentage of time when the prostate moved more than 2 mm in any direction during each fraction was 7%, ranging from 0% to 62% of a fraction. CONCLUSION: Ultrasound-guided prostate SBRT is a good option for intra-fraction motion monitoring with clinically acceptable efficiency.


Assuntos
Neoplasias da Próstata , Radiocirurgia , Radioterapia de Intensidade Modulada , Masculino , Humanos , Próstata/diagnóstico por imagem , Próstata/cirurgia , Radiocirurgia/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Prospectivos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
2.
Radiother Oncol ; 163: 39-45, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34333086

RESUMO

INTRODUCTION: Prior in silico simulations of studies of Temporally Feathered Radiation Therapy (TFRT) have demonstrated potential reduction in normal tissue toxicity. This R-IDEAL Stage 1/2A study seeks to demonstrate the first-in-human implementation of TFRT in treating patients with head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS: Patients with HNSCC treated with definitive radiation therapy were eligible (70 Gy in 35 fractions) were eligible. The primary endpoint was feasibility of TFRT planning as defined by radiation start within 15 business days of CT simulation. Secondary endpoints included estimates of acute grade 3-5 toxicity. RESULTS: The study met its accrual goal of 5 patients. TFRT plans were generated in four of the five patients within 15 business days of CT simulation, therefore meeting the primary endpoint. One patient was not treated with TFRT at the physician's discretion, though the TFRT plan had been generated within sufficient time from the CT simulation. For patients who received TFRT, the median time from CT simulation to radiation start was 10 business days (range 8-15). The average time required for radiation planning was 6 business days. In all patients receiving TFRT, each subplan and every daily fraction was delivered in the correct sequence without error. The OARs feathered included: oral cavity, each submandibular gland, each parotid gland, supraglottis, and posterior pharyngeal wall (OAR pharynx). Prescription dose PTV coverage (>95%) was ensured in each TFRT subplan and the composite TFRT plan. One of five patients developed an acute grade 3 toxicity. CONCLUSIONS: This study demonstrates the first-in-human implementation of TFRT (R-IDEAL Stage 1), proving its feasibility in the modern clinical workflow. Additionally, assessments of acute toxicities and dosimetric comparisons to a standard radiotherapy plan were described (R-IDEAL Stage 2a).


Assuntos
Neoplasias de Cabeça e Pescoço , Planejamento da Radioterapia Assistida por Computador , Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Dosagem Radioterapêutica , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Tecnologia
3.
J Appl Clin Med Phys ; 21(7): 209-215, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32383296

RESUMO

PURPOSE: Prior in silico simulations propose that Temporally Feathered Radiation Therapy (TFRT) may reduce toxicity related to head and neck radiation therapy. In this study we demonstrate a step-by-step guide to TFRT planning with modern treatment planning systems. METHODS: One patient with oropharyngeal cancer planned for definitive radiation therapy using intensity-modulated radiation therapy (IMRT) techniques was replanned using the TFRT technique. Five organs at risk (OAR) were identified to be feathered. A "base plan" was first created based on desired planning target volumes (PTV) coverage, plan conformality, and OAR constraints. The base plan was then re-optimized by modifying planning objectives, to generate five subplans. All beams from each subplan were imported onto one trial to create the composite TFRT plan. The composite TFRT plan was directly compared with the non-TFRT IMRT plan. During plan assessment, the composite TFRT was first evaluated followed by each subplan to meet preset compliance criteria. RESULTS: The following organs were feathered: oral cavity, right submandibular gland, left submandibular gland, supraglottis, and OAR Pharynx. Prescription dose PTV coverage (>95%) was met in each subplan and the composite TFRT plan. Expected small variations in dose were observed among the plans. The percent variation between the high fractional dose and average low fractional dose was 29%, 28%, 24%, 19%, and 10% for the oral cavity, right submandibular, left submandibular, supraglottis, and OAR pharynx nonoverlapping with the PTV. CONCLUSIONS: Temporally Feathered Radiation Therapy planning is possible with modern treatment planning systems. Modest dosimetric changes are observed with TFRT planning compared with non-TFRT IMRT planning. We await the results of the current prospective trial to seeking to demonstrate the feasibility of TFRT in the modern clinical workflow (NCT03768856). Further studies will be required to demonstrate the potential benefit of TFRT over non-TFRT IMRT Planning.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia de Intensidade Modulada , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...