Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 5(1): 88, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28803549

RESUMO

BACKGROUND: The gut microbiota is a reservoir of opportunistic pathogens that can cause life-threatening infections in critically ill patients during their stay in an intensive care unit (ICU). To suppress gut colonization with opportunistic pathogens, a prophylactic antibiotic regimen, termed "selective decontamination of the digestive tract" (SDD), is used in some countries where it improves clinical outcome in ICU patients. Yet, the impact of ICU hospitalization and SDD on the gut microbiota remains largely unknown. Here, we characterize the composition of the gut microbiota and its antimicrobial resistance genes ("the resistome") of ICU patients during SDD and of healthy subjects. RESULTS: From ten patients that were acutely admitted to the ICU, 30 fecal samples were collected during ICU stay. Additionally, feces were collected from five of these patients after transfer to a medium-care ward and cessation of SDD. Feces from ten healthy subjects were collected twice, with a 1-year interval. Gut microbiota and resistome composition were determined using 16S rRNA gene phylogenetic profiling and nanolitre-scale quantitative PCRs. The microbiota of the ICU patients differed from the microbiota of healthy subjects and was characterized by lower microbial diversity, decreased levels of Escherichia coli and of anaerobic Gram-positive, butyrate-producing bacteria of the Clostridium clusters IV and XIVa, and an increased abundance of Bacteroidetes and enterococci. Four resistance genes (aac(6')-Ii, ermC, qacA, tetQ), providing resistance to aminoglycosides, macrolides, disinfectants, and tetracyclines, respectively, were significantly more abundant among ICU patients than in healthy subjects, while a chloramphenicol resistance gene (catA) and a tetracycline resistance gene (tetW) were more abundant in healthy subjects. CONCLUSIONS: The gut microbiota of SDD-treated ICU patients deviated strongly from the gut microbiota of healthy subjects. The negative effects on the resistome were limited to selection for four resistance genes. While it was not possible to disentangle the effects of SDD from confounding variables in the patient cohort, our data suggest that the risks associated with ICU hospitalization and SDD on selection for antibiotic resistance are limited. However, we found evidence indicating that recolonization of the gut by antibiotic-resistant bacteria may occur upon ICU discharge and cessation of SDD.


Assuntos
Antibioticoprofilaxia , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Unidades de Terapia Intensiva , Idoso , Aminoglicosídeos/administração & dosagem , Antibacterianos/administração & dosagem , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estado Terminal , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Voluntários Saudáveis , Hospitalização , Humanos , Macrolídeos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S
2.
J Antimicrob Chemother ; 70(3): 664-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25395549

RESUMO

OBJECTIVES: A number of community-acquired MRSA (CA-MRSA) clonal lineages dominate worldwide. ST80 was dominant in Europe and has increasingly been described from the Middle East. Here we report the whole genome sequence of the first ST80 CA-MRSA from the USA. METHODS: CA-MRSA isolate S0924 was obtained from a patient admitted to Cook County Hospital (Chicago, IL, USA) who came from Syria; the isolate belonged to spa type t044 and ST80. The whole genome sequence of S0924 was determined and compared with three previously published whole genome sequences of ST80 CA-MRSA from Europe and a newly sequenced ST80 CA-MRSA from the Netherlands (S1475). RESULTS: Based on spa typing, SCCmec type and virulence gene profile, this US ST80 isolate is indistinguishable from the European CA-MRSA ST80 clone. SNP analysis within the conserved core genome showed clear differences between the strains with up to 144 SNPs differing between S0924 and strain S1800, an ST80 MRSA from Greece. The gene content showed 21 regions of difference between the US and European isolates, although these were largely restricted to mobile genetic elements. Phylogenetic reconstruction indicated that the European strains were more closely related to each other than to the US strain. The SNP data suggest that a common ancestor existed around two decades ago, indicating that the US and European ST80 strains are clonally linked. CONCLUSIONS: These data combined with the country of origin of the patient suggest that ST80 S0924 was probably relatively recently introduced into the USA from Syria.


Assuntos
Infecções Comunitárias Adquiridas/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Staphylococcus aureus Resistente à Meticilina/genética , Análise de Sequência de DNA , Infecções Estafilocócicas/microbiologia , Chicago , Europa (Continente) , Variação Genética , Genótipo , Humanos , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Dados de Sequência Molecular , Tipagem Molecular , Síria , Fatores de Virulência/genética
3.
J Antimicrob Chemother ; 68(8): 1707-13, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23599362

RESUMO

OBJECTIVES: Methicillin resistance in Staphylococcus aureus and coagulase-negative staphylococci (CoNS) is caused by expression of the low-affinity penicillin-binding protein (PBP) 2a encoded by the mecA gene. This gene is carried on the staphylococcal cassette chromosome mec (SCCmec) of which several types and subtypes have been described. CoNS and S. aureus share SCCmec types and it has been suggested that CoNS are a potential reservoir of mecA for S. aureus. Evidence for this is mainly based on PCR typing of SCCmec or on sequence-based methods including only a limited number of strains. In this study, we determined the genetic relatedness of ccrB sequences contained in SCCmec elements of a spatio-temporally diverse and comprehensive collection of methicillin-resistant CoNS and S. aureus. METHODS: Part of the ccrB genes of 367 methicillin-resistant CoNS and 94 methicillin-resistant S. aureus (MRSA) were sequenced and compared. RESULTS: The data revealed that 92 of 94 (98%) MRSA isolates carried ccrB genes, involving different ccrB alleles, which were indistinguishable from ccrB genes of methicillin-resistant CoNS. In total, 273 of 367 (74%) CoNS shared ccrB gene sequences with MRSA. CONCLUSIONS: The high rate of identical ccrB sequences in a geographically, temporally and genotypically diverse set of S. aureus and CoNS isolates indicates frequent horizontal transfer of SCCmec between CoNS and S. aureus, which may have contributed to the emergence of MRSA.


Assuntos
Proteínas de Bactérias/genética , Variação Genética , Resistência a Meticilina , Recombinases/genética , Staphylococcus/genética , Alelos , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Transferência Genética Horizontal , Humanos , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Staphylococcus/isolamento & purificação
4.
J Bacteriol ; 193(4): 1003-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21148730

RESUMO

Comparative genome analysis of Enterococcus faecium recently revealed that a genomic island containing the esp gene, referred to as the esp-containing pathogenicity island (esp PAI), can be transferred by conjugation and contains a partial Tn916-like element and an integrase gene, intA. Here, we characterize the role of intA in the excision of the esp PAI. An intA insertion-deletion mutant in E. faecium E1162 (E1162ΔintA) was constructed and in trans complemented with wild-type intA (E1162ΔintA::pEF30). Circular intermediates (CI) of excised esp PAI were determined using inverse PCR analysis on purified chromosomal DNA from strains E1162, E1162Δesp, E1162ΔintA, and E1162ΔintA::pEF30. In E1162 and E1162Δesp, CI of the esp PAI were detected. No CI were detected in E1162ΔintA, while in the complemented strain E1162ΔintA::pEF30 CI formation was restored, indicating that intA is essential for excision and subsequent mobilization of the esp-containing genomic island in E. faecium. Based on the fact that this island can be mobilized and is self-transmissible, we propose to change the name of the esp PAI to ICEEfm1.


Assuntos
Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Enterococcus faecium/enzimologia , Enterococcus faecium/genética , Ilhas Genômicas , Integrases/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Conjugação Genética , Enterococcus faecium/metabolismo , Integrases/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...