Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
Redox Biol ; 75: 103261, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38963974

RESUMO

Squamous cell carcinomas (SCCs), including lung, head & neck, bladder, and skin SCCs often display constitutive activation of the KEAP1-NRF2 pathway. Constitutive activation is achieved through multiple mechanisms, including activating mutations in NFE2L2 (NRF2). To determine the functional consequences of Nrf2 activation on skin SCC development, we assessed the effects of mutant Nrf2E79Q expression, one of the most common activating mutations in human SCCs, on tumor promotion and progression in the mouse skin multistage carcinogenesis model using a DMBA-initiation/TPA-promotion protocol where the Hras A->T mutation (Q61L) is the canonical driver mutation. Nrf2E79Q expression was temporally and conditionally activated in the epidermis at two stages of tumor development: 1) after DMBA initiation in the epidermis but before cutaneous tumor development and 2) in pre-existing DMBA-initiated/TPA-promoted squamous papillomas. Expression of Nrf2E79Q in the epidermis after DMBA initiation but before tumor occurrence inhibited the development/promotion of 70% of squamous papillomas. However, the remaining papillomas often displayed non-canonical Hras and Kras mutations and enhanced progression to SCCs compared to control mice expressing wildtype Nrf2. Nrf2E79Q expression in pre-existing tumors caused rapid regression of 60% of papillomas. The remaining papillomas displayed the expected canonical Hras A->T mutation (Q61L) and enhanced progression to SCCs. These results demonstrate that mutant Nrf2E79Q enhances the promotion and progression of a subset of skin tumors and alters the frequency and diversity of oncogenic Ras mutations when expressed early after initiation.

2.
Nat Commun ; 15(1): 4609, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816425

RESUMO

The protection of the replication fork structure under stress conditions is essential for genome maintenance and cancer prevention. A key signaling pathway for fork protection involves TRPV2-mediated Ca2+ release from the ER, which is triggered after the generation of cytosolic DNA and the activation of cGAS/STING. This results in CaMKK2/AMPK activation and subsequent Exo1 phosphorylation, which prevent aberrant fork processing, thereby ensuring genome stability. However, it remains poorly understood how the TRPV2 channel is activated by the presence of cytosolic DNA. Here, through a genome-wide CRISPR-based screen, we identify TRPM8 channel-associated factor 1 (TCAF1) as a key factor promoting TRPV2-mediated Ca2+ release under replication stress or other conditions that activate cGAS/STING. Mechanistically, TCAF1 assists Ca2+ release by facilitating the dissociation of STING from TRPV2, thereby relieving TRPV2 repression. Consistent with this function, TCAF1 is required for fork protection, chromosomal stability, and cell survival after replication stress.


Assuntos
Cálcio , Citosol , Replicação do DNA , Proteínas de Membrana , Canais de Cátion TRPV , Humanos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Cálcio/metabolismo , Citosol/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células HEK293 , DNA/metabolismo , Células HeLa , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Fosforilação , Instabilidade Genômica , Dano ao DNA , Animais
3.
PLoS One ; 19(2): e0297741, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358974

RESUMO

Prior to the next generation sequencing and characterization of the tumor genome landscape, mutations in the SWI/SNF chromatin remodeling complex and the KEAP1-NRF2 signaling pathway were underappreciated. While these two classes of mutations appeared to independently contribute to tumor development, recent reports have demonstrated a mechanistic link between these two regulatory mechanisms in specific cancer types and cell models. In this work, we expand upon these data by exploring the relationship between mutations in BAF and PBAF subunits of the SWI/SNF complex and activation of NRF2 signal transduction across many cancer types. ARID1A/B mutations were strongly associated with NRF2 transcriptional activity in head and neck squamous carcinomas (HNSC). Many additional tumor types showed significant association between NRF2 signaling and mutation of specific components of the SWI/SNF complex. Different effects of BAF and PBAF mutations on the polarity of NRF2 signaling were observed. Overall, our results support a context-dependent functional link between SWI/SNF and NRF2 mutations across human cancers and implicate ARID1A inactivation in HPV-negative HNSC in promoting tumor progression and survival through activation of the KEAP1-NRF2 signaling pathway. The tumor-specific effects of these mutations open a new area of study for how mutations in the KEAP1-NRF2 pathway and the SWI/SNF complex contribute to cancer.


Assuntos
Proteínas de Ligação a DNA , Neoplasias de Cabeça e Pescoço , Fator 2 Relacionado a NF-E2 , Fatores de Transcrição , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Cancer Res Commun ; 4(2): 487-495, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335300

RESUMO

Aberrant activation of the NRF2/NFE2L2 transcription factor commonly occurs in head and neck squamous cell carcinomas (HNSCC). Mouse model studies have shown that NRF2 activation alone does not result in cancer. When combined with classic oncogenes and at the right dose, NRF2 activation promotes tumor initiation and progression. Here we deleted the tumor suppressor genes p16INK4A and p53 (referred to as CP mice), which are commonly lost in human HNSCC, in the presence of a constitutively active NRF2E79Q mutant (CPN mice). NRF2E79Q expression in CPN mice resulted in squamous cell hyperplasia or dysplasia with hyperkeratosis in the esophagus, oropharynx, and forestomach. In addition, CPN mice displayed oral cavity squamous cell carcinoma (OSCC); CP mice bearing wild-type NRF2 expression did not develop oral cavity hyperplasia, dysplasia or OSCC. In both CP and CPN mice, we also observed predominantly abdominal sarcomas and carcinomas. Our data show that in the context of p53 and p16 tumor suppressor loss, NRF2 activation serves oncogenic functions to drive OSCC. CPN mice represent a new model for OSCC that closely reflects the genetics of human HNSCC. SIGNIFICANCE: Human squamous cancers frequently show constitutive NRF2 activation, associated with poorer outcomes and resistance to multiple therapies. Here, we report the first activated NRF2-driven and human-relevant mouse model of squamous cell carcinoma that develops in the background of p16 and p53 loss. The availability of this model will lead to a clearer understanding of how NRF2 contributes to the initiation, progression, and therapeutic response of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Humanos , Camundongos , Carcinoma de Células Escamosas/genética , Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço/genética , Hiperplasia/genética , Neoplasias Bucais/genética , Fator 2 Relacionado a NF-E2/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteína Supressora de Tumor p53/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo
5.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260460

RESUMO

Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. From a screen of human airway derived cell lines that express varying levels of ACE2/TMPRSS2, we found a subset that express comparably high endogenous levels of ACE2 but surprisingly did not support SARS-CoV-2 replication. Here we report that this resistance is mediated by a basally active cGAS-STING pathway culminating in interferon (IFN)-mediated restriction of SARS-CoV-2 replication at a post-entry step. Pharmacological inhibition of JAK1/2, depletion of the IFN-α receptor and cGAS-STING pathway effectors substantially increased SARS-CoV-2 replication in these cell models. While depletion of cGAS or STING was sufficient to reduce the preexisting levels of IFN-stimulated genes (ISGs), SARS-CoV-2 infection in STING knockout cells independently induced ISG expression. Remarkably, SARS-CoV-2-induced ISG expression in STING knockout cell as well as in primary human airway cultures was limited to uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway, but not viral sensing or IFN production, in productively infected cells. Of note, SARS-CoV-2-infected primary human airway cells also displayed markedly lower levels of STING expression, raising the possibility that SARS-CoV-2 can target STING expression or preferentially infect cells that express low levels of STING. Finally, ectopic ACE2 overexpression overcame the IFN-mediated blocks, suggesting the ability of SARS-CoV-2 to overcome these possibly saturable blocks to infection. Our study highlights that in addition to viral receptors, basal activation of the cGAS-STING pathway and innate immune defenses may contribute to defining SARS-CoV-2 cellular tropism.

6.
Drug Discov Today ; 29(3): 103881, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218213

RESUMO

The human kinome, with more than 500 proteins, is crucial for cell signaling and disease. Yet, about one-third of kinases lack in-depth study. The Data and Resource Generating Center for Understudied Kinases has developed multiple resources to address this challenge including creation of a heavy amino acid peptide library for parallel reaction monitoring and quantitation of protein kinase expression, use of understudied kinases tagged with a miniTurbo-biotin ligase to determine interaction networks by proximity-dependent protein biotinylation, NanoBRET probe development for screening chemical tool target specificity in live cells, characterization of small molecule chemical tools inhibiting understudied kinases, and computational tools for defining kinome architecture. These resources are available through the Dark Kinase Knowledgebase, supporting further research into these understudied protein kinases.


Assuntos
Proteínas Quinases , Proteínas , Humanos , Proteínas Quinases/metabolismo , Proteômica
7.
Mol Cell Proteomics ; 22(11): 100647, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716475

RESUMO

The NFE2L2 (NRF2) oncogene and transcription factor drives a gene expression program that promotes cancer progression, metabolic reprogramming, immune evasion, and chemoradiation resistance. Patient stratification by NRF2 activity may guide treatment decisions to improve outcome. Here, we developed a mass spectrometry-based targeted proteomics assay based on internal standard-triggered parallel reaction monitoring to quantify 69 NRF2 pathway components and targets, as well as 21 proteins of broad clinical significance in head and neck squamous cell carcinoma (HNSCC). We improved an existing internal standard-triggered parallel reaction monitoring acquisition algorithm, called SureQuant, to increase throughput, sensitivity, and precision. Testing the optimized platform on 27 lung and upper aerodigestive cancer cell models revealed 35 NRF2 responsive proteins. In formalin-fixed paraffin-embedded HNSCCs, NRF2 signaling intensity positively correlated with NRF2-activating mutations and with SOX2 protein expression. Protein markers of T-cell infiltration correlated positively with one another and with human papilloma virus infection status. CDKN2A (p16) protein expression positively correlated with the human papilloma virus oncogenic E7 protein and confirmed the presence of translationally active virus. This work establishes a clinically actionable HNSCC protein biomarker assay capable of quantifying over 600 peptides from frozen or formalin-fixed paraffin-embedded archived tissues in under 90 min.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/metabolismo , Fator 2 Relacionado a NF-E2 , Proteômica , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Biomarcadores Tumorais/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/uso terapêutico , Formaldeído
8.
Cancer Res ; 83(6): 861-874, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36652552

RESUMO

Radiotherapy (RT) is one of the primary treatments of head and neck squamous cell carcinoma (HNSCC), which has a high-risk of locoregional failure (LRF). Presently, there is no reliable predictive biomarker of radioresistance in HNSCC. Here, we found that mutations in NFE2L2, which encodes Nrf2, are associated with a significantly higher rate of LRF in patients with oral cavity cancer treated with surgery and adjuvant (chemo)radiotherapy but not in those treated with surgery alone. Somatic mutation of NFE2L2 led to Nrf2 activation and radioresistance in HNSCC cells. Tumors harboring mutant Nrf2E79Q were substantially more radioresistant than tumors with wild-type Nrf2 in immunocompetent mice, whereas the difference was diminished in immunocompromised mice. Nrf2E79Q enhanced radioresistance through increased recruitment of intratumoral polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) and reduction of M1-polarized macrophages. Treatment with the glutaminase inhibitor CB-839 overcame the radioresistance induced by Nrf2E79Q or Nrf2E79K. RT increased expression of PMN-MDSC-attracting chemokines, including CXCL1, CXLC3, and CSF3, in Nrf2E79Q-expressing tumors via the TLR4, which could be reversed by CB-839. This study provides insights into the impact of NFE2L2 mutations on radioresistance and suggests that CB-839 can increase radiosensitivity by switching intratumoral myeloid cells to an antitumor phenotype, supporting clinical testing of CB-839 with RT in HNSCC with NFE2L2 mutations. SIGNIFICANCE: NFE2L2 mutations are predictive biomarkers of radioresistance in head and neck cancer and confer sensitivity to glutaminase inhibitors to overcome radioresistance.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Células Supressoras Mieloides , Animais , Camundongos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/patologia , Glutaminase/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/metabolismo , Mutação , Células Supressoras Mieloides/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Tolerância a Radiação/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Humanos
9.
Adv Sci (Weinh) ; 10(3): e2203718, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445063

RESUMO

STING is an innate immune sensor for immune surveillance of viral/bacterial infection and maintenance of an immune-friendly microenvironment to prevent tumorigenesis. However, if and how STING exerts innate immunity-independent function remains elusive. Here, the authors report that STING expression is increased in renal cell carcinoma (RCC) patients and governs tumor growth through non-canonical innate immune signaling involving mitochondrial ROS maintenance and calcium homeostasis. Mitochondrial voltage-dependent anion channel VDAC2 is identified as a new STING binding partner. STING depletion potentiates VDAC2/GRP75-mediated MERC (mitochondria-ER contact) formation to increase mitochondrial ROS/calcium levels, impairs mitochondria function, and suppresses mTORC1/S6K signaling leading to RCC growth retardation. STING interaction with VDAC2 occurs through STING-C88/C91 palmitoylation and inhibiting STING palmitoyl-transferases ZDHHCs by 2-BP significantly impedes RCC cell growth alone or in combination with sorafenib. Together, these studies reveal an innate immunity-independent function of STING in regulating mitochondrial function and growth in RCC, providing a rationale to target the STING/VDAC2 interaction in treating RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Cálcio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Imunidade Inata , Microambiente Tumoral , Canal de Ânion 2 Dependente de Voltagem/metabolismo
10.
J Biol Chem ; 298(6): 101986, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35487243

RESUMO

Aberrant activation or suppression of WNT/ß-catenin signaling contributes to cancer initiation and progression, neurodegeneration, and bone disease. However, despite great need and more than 40 years of research, targeted therapies for the WNT pathway have yet to be fully realized. Kinases are considered exceptionally druggable and occupy key nodes within the WNT signaling network, but several pathway-relevant kinases remain understudied and "dark." Here, we studied the function of the casein kinase 1γ (CSNK1γ) subfamily of human kinases and their roles in WNT signaling. miniTurbo-based proximity biotinylation and mass spectrometry analysis of CSNK1γ1, CSNK1γ2, and CSNK1γ3 revealed numerous components of the ß-catenin-dependent and ß-catenin-independent WNT pathways. In gain-of-function experiments, we found that CSNK1γ3 but not CSNK1γ1 or CSNK1γ2 activated ß-catenin-dependent WNT signaling, with minimal effect on other signaling pathways. We also show that within the family, CSNK1γ3 expression uniquely induced low-density lipoprotein receptor-related protein 6 phosphorylation, which mediates downstream WNT signaling transduction. Conversely, siRNA-mediated silencing of CSNK1γ3 alone had no impact on WNT signaling, though cosilencing of all three family members decreased WNT pathway activity. Finally, we characterized two moderately selective and potent small-molecule inhibitors of the CSNK1γ family. We show that these inhibitors and a CSNK1γ3 kinase-dead mutant suppressed but did not eliminate WNT-driven low-density lipoprotein receptor-related protein 6 phosphorylation and ß-catenin stabilization. Our data suggest that while CSNK1γ3 expression uniquely drives pathway activity, potential functional redundancy within the family necessitates loss of all three family members to suppress the WNT signaling pathway.


Assuntos
Caseína Quinase I , Via de Sinalização Wnt , beta Catenina , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fosforilação , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
11.
J Biol Chem ; 298(4): 101723, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35157847

RESUMO

A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be nonenzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only produced in the lysine and tryptophan oxidative pathways. To better understand the biology of protein glutarylation, we studied the relationship between enzymes within the lysine/tryptophan catabolic pathways, protein glutarylation, and regulation by the deglutarylating enzyme sirtuin 5 (SIRT5). Here, we identify glutarylation on the lysine oxidation pathway enzyme glutaryl-CoA dehydrogenase (GCDH) and show increased GCDH glutarylation when glutaryl-CoA production is stimulated by lysine catabolism. Our data reveal that glutarylation of GCDH impacts its function, ultimately decreasing lysine oxidation. We also demonstrate the ability of SIRT5 to deglutarylate GCDH, restoring its enzymatic activity. Finally, metabolomic and bioinformatic analyses indicate an expanded role for SIRT5 in regulating amino acid metabolism. Together, these data support a feedback loop model within the lysine/tryptophan oxidation pathway in which glutaryl-CoA is produced, in turn inhibiting GCDH function via glutaryl modification of GCDH lysine residues and can be relieved by SIRT5 deacylation activity.


Assuntos
Glutaril-CoA Desidrogenase , Lisina , Sirtuínas , Animais , Glutaril-CoA Desidrogenase/metabolismo , Lisina/metabolismo , Camundongos , Oxirredução , Processamento de Proteína Pós-Traducional , Sirtuínas/metabolismo , Triptofano/metabolismo
12.
Nat Commun ; 13(1): 136, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013263

RESUMO

Emerging research supports that triclosan (TCS), an antimicrobial agent found in thousands of consumer products, exacerbates colitis and colitis-associated colorectal tumorigenesis in animal models. While the intestinal toxicities of TCS require the presence of gut microbiota, the molecular mechanisms involved have not been defined. Here we show that intestinal commensal microbes mediate metabolic activation of TCS in the colon and drive its gut toxicology. Using a range of in vitro, ex vivo, and in vivo approaches, we identify specific microbial ß-glucuronidase (GUS) enzymes involved and pinpoint molecular motifs required to metabolically activate TCS in the gut. Finally, we show that targeted inhibition of bacterial GUS enzymes abolishes the colitis-promoting effects of TCS, supporting an essential role of specific microbial proteins in TCS toxicity. Together, our results define a mechanism by which intestinal microbes contribute to the metabolic activation and gut toxicity of TCS, and highlight the importance of considering the contributions of the gut microbiota in evaluating the toxic potential of environmental chemicals.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Carcinógenos/antagonistas & inibidores , Colite/prevenção & controle , Neoplasias Colorretais/prevenção & controle , Glucuronidase/antagonistas & inibidores , Inibidores de Glicosídeo Hidrolases/farmacologia , Triclosan/antagonistas & inibidores , Animais , Anti-Infecciosos Locais/química , Anti-Infecciosos Locais/metabolismo , Anti-Infecciosos Locais/toxicidade , Anticarcinógenos/química , Anticarcinógenos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biotransformação , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinógenos/química , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Colite/induzido quimicamente , Colite/enzimologia , Colite/microbiologia , Colo/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Expressão Gênica , Glucuronidase/química , Glucuronidase/genética , Glucuronidase/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triclosan/química , Triclosan/metabolismo , Triclosan/toxicidade
13.
ACS Chem Biol ; 16(12): 2766-2775, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34784173

RESUMO

Homodimers are the most abundant type of enzyme in cells, and as such, they represent the most elemental system for studying the phenomenon of allostery. In these systems, in which the allosteric features are manifest by the effect of the first binding event on a similar event at the second site, the most informative state is the asymmetric singly bound (lig1) form, yet it tends to be thermodynamically elusive. Here we obtain milligram quantities of lig1 of the allosteric homodimer, chorismate mutase, in the form of a mixed isotopically labeled dimer stabilized by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) between the subunits. Below, we outline several critical steps required to generate high yields of both types of unnatural amino acid-containing proteins and overcome multiple pitfalls intrinsic to CuAAC to obtain high yields of a highly purified, fully intact, active mixed labeled dimer, which provides the first glimpse of the lig1 intermediate. These data not only will make possible NMR-based investigations of allostery envisioned by us but also should facilitate other structural applications in which specific linkage of proteins is helpful.


Assuntos
Cobre/química , Compostos Organometálicos/química , Alcinos/química , Sítio Alostérico , Azidas/química , Catálise , Reação de Cicloadição , Dimerização , Espectroscopia de Ressonância Magnética , Ligação Proteica , Termodinâmica
15.
Cancer Res ; 80(22): 4972-4985, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32978168

RESUMO

Lung squamous carcinoma (LUSC) is a highly metastatic disease with a poor prognosis. Using an integrated screening approach, we found that miR-671-5p reduces LUSC metastasis by inhibiting a circular RNA (circRNA), CDR1as. Although the putative function of circRNA is through miRNA sponging, we found that miR-671-5p more potently silenced an axis of CDR1as and its antisense transcript, cerebellar degeneration related protein 1 (CDR1). Silencing of CDR1as or CDR1 significantly inhibited LUSC metastases and CDR1 was sufficient to promote migration and metastases. CDR1, which directly interacted with adaptor protein 1 (AP1) complex subunits and coatomer protein I (COPI) proteins, no longer promoted migration upon blockade of Golgi trafficking. Therapeutic inhibition of the CDR1as/CDR1 axis with miR-671-5p mimics reduced metastasis in vivo. This report demonstrates a novel role for CDR1 in promoting metastasis and Golgi trafficking. These findings reveal an miRNA/circRNA axis that regulates LUSC metastases through a previously unstudied protein, CDR1. SIGNIFICANCE: This study shows that circRNA, CDR1as, promotes lung squamous migration, metastasis, and Golgi trafficking through its complimentary transcript, CDR1.


Assuntos
Autoantígenos/metabolismo , Carcinoma de Células Escamosas/secundário , Complexo de Golgi/metabolismo , Neoplasias Pulmonares/patologia , Proteínas do Tecido Nervoso/metabolismo , RNA Circular/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , Complexo 1 de Proteínas Adaptadoras/metabolismo , Animais , Autoantígenos/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Complexo I de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Humanos , Ácido Hialurônico/uso terapêutico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Nanopartículas/uso terapêutico , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética
16.
Mol Cancer Res ; 18(12): 1777-1788, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32855269

RESUMO

The NF-E2-related factor 2 (referred to as NRF2) transcription factor binds antioxidant responsive elements within the promoters of cytoprotective genes to induce their expression. Next-generation sequencing studies in lung cancer have shown a significant number of activating mutations within the NRF2 signaling pathway. Mutations in components of the SWI/SNF chromatin-remodeling complex, a general regulator of transcription using either BRG1 or BRM as the catalytic subunit, also frequently occur in lung cancers. Importantly, low BRG1 expression levels in primary human NSCLC correlated with increased NRF2-target gene expression. Here, we show that loss of SWI/SNF complex function activated a subset of NRF2-mediated transcriptional targets. Using a series of isogenic NSCLC lines with reduced or depleted BRG1 and/or BRM expression, we observed significantly increased expression of the NRF2-target genes HMOX1 and GSTM4. In contrast, expression of the NRF2 target genes NQO1 and GCLM modestly increased following BRM reduction. Chromatin immunoprecipitation showed that BRG1 knockdown led to increased NRF2 binding at its respective ARE sites in the HMOX1 promoter but not in NQO1 and GCLM. Our data demonstrate that loss of BRG1 or BRM in lung cancer results in activation of the NRF2/KEAP1 pathway and HMOX1 expression. Therefore, we provide an additional molecular explanation for why patients harboring BRG1 or BRM mutations show poor prognoses. A better understanding of this mechanism may yield novel insights into the design of targeted treatment modalities. IMPLICATIONS: Our study identifies a novel mechanism for how mutations in the SMARCA4 gene may drive progression of human lung adenocarcinomas.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , DNA Helicases/genética , Neoplasias Pulmonares/genética , Proteínas Nucleares/genética , Análise de Sequência de DNA/métodos , Transdução de Sinais , Fatores de Transcrição/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Regulação Neoplásica da Expressão Gênica , Glutamato-Cisteína Ligase/genética , Glutationa Transferase/genética , Heme Oxigenase-1/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Mutação , NAD(P)H Desidrogenase (Quinona)/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
17.
Nucleic Acids Res ; 48(17): 9415-9432, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32658293

RESUMO

Nuclear proteins bind chromatin to execute and regulate genome-templated processes. While studies of individual nucleosome interactions have suggested that an acidic patch on the nucleosome disk may be a common site for recruitment to chromatin, the pervasiveness of acidic patch binding and whether other nucleosome binding hot-spots exist remain unclear. Here, we use nucleosome affinity proteomics with a library of nucleosomes that disrupts all exposed histone surfaces to comprehensively assess how proteins recognize nucleosomes. We find that the acidic patch and two adjacent surfaces are the primary hot-spots for nucleosome disk interactions, whereas nearly half of the nucleosome disk participates only minimally in protein binding. Our screen defines nucleosome surface requirements of nearly 300 nucleosome interacting proteins implicated in diverse nuclear processes including transcription, DNA damage repair, cell cycle regulation and nuclear architecture. Building from our screen, we demonstrate that the Anaphase-Promoting Complex/Cyclosome directly engages the acidic patch, and we elucidate a redundant mechanism of acidic patch binding by nuclear pore protein ELYS. Overall, our interactome screen illuminates a highly competitive nucleosome binding hub and establishes universal principles of nucleosome recognition.


Assuntos
Nucleossomos/metabolismo , Proteínas/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Sítios de Ligação , Cromatina/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Metáfase , Mutação , Proteômica/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
J Pathol ; 252(2): 125-137, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619021

RESUMO

Activation of the nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or NRF2) transcription factor is a critical and evolutionarily conserved cellular response to oxidative stress, metabolic stress, and xenobiotic insult. Deficiency of NRF2 results in hypersensitivity to a variety of stressors, whereas its aberrant activation contributes to several cancer types, most commonly squamous cell carcinomas of the esophagus, oral cavity, bladder, and lung. Between 10% and 35% of patients with squamous cell carcinomas display hyperactive NRF2 signaling, harboring activating mutations and copy number amplifications of the NFE2L2 oncogene or inactivating mutations or deletions of KEAP1 or CUL3, the proteins of which co-complex to ubiquitylate and degrade NRF2 protein. To better understand the role of NRF2 in tumorigenesis and more broadly in development, we engineered the endogenous Nfe2l2 genomic locus to create a conditional mutant LSL-Nrf2E79Q mouse model. The E79Q mutation, one of the most commonly observed NRF2-activating mutations in human squamous cancers, codes for a mutant protein that does not undergo KEAP1/CUL3-dependent degradation, resulting in its constitutive activity. Expression of NRF2 E79Q protein in keratin 14 (KRT14)-positive murine tissues resulted in hyperplasia of squamous cell tissues of the tongue, forestomach, and esophagus, a stunted body axis, decreased weight, and decreased visceral adipose depots. RNA-seq profiling and follow-up validation studies of cultured NRF2E79Q murine esophageal epithelial cells revealed known and novel NRF2-regulated transcriptional programs, including genes associated with squamous cell carcinoma (e.g. Myc), lipid and cellular metabolism (Hk2, Ppard), and growth factors (Areg, Bmp6, Vegfa). These data suggest that in addition to decreasing adipogenesis, KRT14-restricted NRF2 activation drives hyperplasia of the esophagus, forestomach, and tongue, but not formation of squamous cell carcinoma. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Tecido Adiposo Branco/patologia , Carcinogênese/genética , Modelos Animais de Doenças , Fator 2 Relacionado a NF-E2/genética , Lesões Pré-Cancerosas/genética , Trato Gastrointestinal Superior/patologia , Animais , Carcinoma de Células Escamosas/genética , Esôfago/patologia , Humanos , Hiperplasia/genética , Camundongos , Mutação , Língua/patologia
19.
Am J Orthod Dentofacial Orthop ; 157(4): 466-473.e1, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32241353

RESUMO

INTRODUCTION: Pediatric sleep-disordered breathing (SDB) describes a spectrum of disease ranging from snoring to upper airway resistance syndrome and obstructive sleep apnea (OSA). Anatomical features assessed during orthodontic exams are often associated with symptoms of SDB in children. Hence, we need to determine the prevalence of positive risk for SDB in the pediatric orthodontic population compared with a general pediatric population and understand comorbidities associated with SDB risk among orthodontic patients. METHODS: Responses from Pediatric Sleep Questionnaires were collected from 390 patients between the ages of 5 and 16 years, seeking orthodontic treatment. Prevalence of overall SDB risk, habitual snoring, and sleepiness were determined in the orthodontic population and compared with those previously reported by identical methods in the general pediatric population. Additional health history information was used to assess comorbidities associated with SDB risk in 130 of the patients. RESULTS: At 10.8%, the prevalence of positive SDB risk was found to be significantly higher in the general pediatric orthodontic population than in a healthy pediatric population (5%). The prevalence of snoring and sleepiness in the orthodontic population was 13.3% and 17.9%, respectively. Among the comorbidities, nocturnal enuresis (13.6%), overweight (18.2%), and attention deficit hyperactivity disorder (31.8%) had a higher prevalence in orthodontic patients with higher SDB risk (P < 0.05). CONCLUSIONS: There is a higher pediatric SDB risk prevalence in the orthodontic population compared with a healthy pediatric population. Orthodontic practitioners should make SDB screening a routine part of their clinical practice.


Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Adolescente , Criança , Pré-Escolar , Humanos , Prevalência , Ronco , Inquéritos e Questionários
20.
Cytoskeleton (Hoboken) ; 77(3-4): 149-166, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31479585

RESUMO

MYO19 interacts with mitochondria through a C-terminal membrane association domain (MyMOMA). Specific mechanisms for localization of MYO19 to mitochondria are poorly understood. Using promiscuous biotinylation data in combination with existing affinity-capture databases, we have identified a number of putative MYO19-interacting proteins. We chose to explore the interaction between MYO19 and the mitochondrial GTPase Miro2 by expressing mchr-Miro2 in combination with GFP-tagged fragments of the MyMOMA domain and assaying for recruitment of MYO19-GFP to mitochondria. Coexpression of MYO19898-970 -GFP with mchr-Miro2 enhanced MYO19898-970 -GFP localization to mitochondria. Mislocalizing Miro2 to filopodial tips or the cytosolic face of the nuclear envelope did not recruit MYO19898-970 -GFP to either location. To address the kinetics of the Miro2/MYO19 interaction, we used FRAP analysis and permeabilization-activated reduction in fluorescence analysis. MyMOMA constructs containing a putative membrane-insertion motif but lacking the Miro2-interacting region displayed slow exchange kinetics. MYO19898-970 -GFP, which does not include the membrane-insertion motif, displayed rapid exchange kinetics, suggesting that MYO19 interacting with Miro2 has higher mobility than MYO19 inserted into the mitochondrial outer membrane. Mutation of well-conserved, charged residues within MYO19 or within the switch I and II regions of Miro2 abolished the enhancement of MYO19898-970 -GFP localization in cells ectopically expressing mchr-Miro2. Additionally, expressing mutant versions of Miro2 thought to represent particular nucleotide states indicated that the enhancement of MYO19898-970 -GFP localization is dependent on Miro2 nucleotide state. Taken together, these data suggest that membrane-inserted MYO19 is part of a larger complex, and that Miro2 plays a role in integration of actin- and microtubule-based mitochondrial activities.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Miosinas/metabolismo , Humanos , Ligação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...