Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Phys ; 31(2): 83-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21206670

RESUMO

The aim of this study is to derive the non-uniformity correction factor for the two therapy ionization chambers for the dose measurement near the brachytherapy source. The two ionization chambers of 0.6 cc and 0.1 cc volume were used. The measurement in air was performed for distances between 0.8 cm and 20 cm from the source in specially designed measurement jig. The non-uniformity correction factors were derived from the measured values. The experimentally derived factors were compared with the theoretically calculated non-uniformity correction factors and a close agreement was found between these two studies. The experimentally derived non-uniformity correction factor supports the anisotropic theory.

2.
J Cancer Res Ther ; 1(2): 84-91, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-17998633

RESUMO

PURPOSE: The aim of this study is to achieve dose uniformity for intraluminal implants by assessment of dose distributions for single catheter generated by using various combinations of source stopping spacing and optimization mode. MATERIALS AND METHODS: A dose distribution was generated using HDR 192Ir stepping source on single straight catheter of fixed length used for Intraluminal brachytherapy. The various combinations of source position spacing and optimization mode were used and these dose distributions were evaluated by using three different parameters. The source position spacings were 0.2, 0.5, 1.0, 1.4, 2.0, 2.5, 3.0 and 3.3 cm. Three different optimization modes that compute the source stopping times along the catheter were used. The parameters used for assessment of dose distributions were statistical analysis of doses to dose reference points, area under natural dose-volume histogram and the dose non-uniformity ratio. RESULTS: None of the combinations of source position spacing and optimization mode was able to generate the desired optimum uniform dose distribution. However in a discrete manner, comparatively higher uniform dose distribution was found with short (0.2 cm) and longer (1.5 to 2.0 cm) source spacing. Optimization mode of Iterative correction was found to be suitable for the single catheter used in intraluminal brachytherapy. CONCLUSION: The applicator dimension and irradiation target volume should be taken in to consideration while selecting either higher or smaller source position spacing for the single catheter intraluminal brachytherapy. The Anisotropy factor of the source has some role in the variation of the dose uniformity over the target volume.


Assuntos
Braquiterapia/métodos , Radioisótopos de Irídio/uso terapêutico , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
J Cancer Res Ther ; 1(4): 213-20, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-17998656

RESUMO

The Gammamed Plus 192Ir high dose rate brachytherapy sources were calibrated using the therapy level ionization chambers (0.1 and 0.6 cc) and the well-type chamber. The aim of the present study was to assess the accuracy and suitability of use of the therapy level chambers for in-air calibration of brachytherapy sources in routine clinical practice. In a calibration procedure using therapy ion chambers, the air kerma was measured at several distances from the source in a specially designed jig. The room scatter correction factor was determined by superimposition method based on the inverse square law. Various other correction factors were applied on measured air kerma values at multiple distances and mean value was taken to determine the air kerma strength of the source. The results from four sources, the overall mean deviation between measured and quoted source strength by manufacturers was found -2.04% (N = 18) for well-type chamber. The mean deviation for the 0.6 cc chamber with buildup cap was found -1.48 % (N = 19) and without buildup cap was 0.11% (N = 22). The mean deviation for the 0.1 cc chamber was found -0.24% (N = 27). Result shows that probably the excess ionization in case of 0.6 cc therapy ion chamber without buildup cap was estimated about 2.74% and 1.99% at 10 and 20 cm from the source respectively. Scattered radiation measured by the 0.1 cc and 0.6 cc chamber at 10 cm measurement distance was about 1.1% and 0.33% of the primary radiation respectively. The study concludes that the results obtained with therapy level ionization chambers were extremely reproducible and in good agreement with the results of the well-type ionization chamber and source supplier quoted value. The calibration procedure with therapy ionization chambers is equally competent and suitable for routine calibration of the brachytherapy sources.


Assuntos
Braquiterapia/métodos , Radioisótopos de Irídio , Calibragem , Humanos , Dosagem Radioterapêutica , Radioterapia de Alta Energia/métodos , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...