Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 337: 139370, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37402426

RESUMO

In recent years, production of cellulose nanofiber (CNF) from waste materials has achieved great interest owing to their renewable nature, biodegradability, high mechanical properties, economic value, and low density. Because Polyvinyl alcohol (PVA) is a synthetic biopolymer with good water solubility and biocompatibility, the composite material formed of CNF and PVA, is a sustainable way of monetizing to address environmental and economic issues. In this work pure PVA, PVA/CNF0.5, PVA/CNF1.0, PVA/CNF1.5, and PVA/CNF2.0 nanocomposite films were produced using the solvent casting approach with the addition of 0, 0.5, 1.0, 1.5, and 2.0 wt% of CNF concentrations respectively. The strongest water absorption behaviour was found as 25.82% for pure PVA membrane, followed by PVA/CNF0.5 (20.71%), PVA/CNF1.0 (10.26%), PVA/CNF1.5 (9.63%), and PVA/CNF2.0 (4.35%). The water contact angle of 53.1°, 47.8°, 43.4°, 37.7°, and 32.3° was formed between water droplet and the solid-liquid interface of pure PVA, PVA/CNF0.5, PVA/CNF1.0, PVA/CNF1.5, PVA/CNF2.0 composite films respectively. The SEM image clearly shows that a network structure like a tree form at the PVA/CNF0.5 composite film, where the sizes and number of pores are apparent. XRD analysis suggested that unique peaks found at 2θ = 17.5°, 28.1°, 33.4°, and 38° for nanocomposites indicating new crystal plane generated upon cross-linking in presence of malic acid. The maximum loss rate temperature (Td,max) for PVA/CNF0.5, PVA/CNF1.0, PVA/CNF1.5 was determined by TG analysis to be around 273.4 °C. FTIR studies suggested that PVA/CNF0.5 composite film showed the highest peak at 1428 cm-1 as compared to other PVA/CNF composite films representing the presence of higher crystalline band in the composite film matrix. PVA/CNF0.5 composite film was found to have a surface porosity and mean pore size of 27.35% and 0.19 µm respectively, classifying it in the MF membrane category. The maximum tensile strength (TS) of 5.27 MPa was found for PVA/CNF0.5, followed by PVA/CNF1.0, PVA/CNF1.5, pure PVA, and PVA/CNF2.0. The maximum young's modulus (111 MPa) was found for PVA/CNF1.0, followed by PVA/CNF0.5, PVA/CNF2.0, PVA/CNF1.5, and pure PVA, which could be attributed to the cyclization of the molecular structures by cross-linking. PVA/CNF0.5 exhibits greater elongation at break (21.7) than the other polymers, indicating a material's ability to undergo significant deformation before failure. Performance evaluation of the PVA/CNF0.5 composite film showed that 46.3% and 92.8% yield were found in the retentate for 200 mg/L of BSA, and 5 × 107 CFU/mL respectively. However, more than 90% E. coli was retained by PVA/CNF0.5 composite film, therefore absolute rating of this membrane is 0.22 µm. The size of this composite film may be therefore considered in the range of MF.


Assuntos
Nanofibras , Poaceae , Álcool de Polivinil/química , Celulose/química , Nanofibras/química , Escherichia coli , Água/química
2.
Recent Pat Biotechnol ; 13(1): 19-32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30147019

RESUMO

Background and Source: Laccase belongs to the blue multi-copper oxidases, which are widely distributed in fungi and higher plants. It is present in Ascomycetes, Deuteromycetes, and Basidiomycetes and found abundantly in white-rot fungi. Applications: Laccase enzymes because of their potential have acquired more importance and application in the area of textile, pulp and paper, and food industry. Recently, it is being used in developing biosensors for detection and removal of toxic pollutants, designing of biofuel cells and medical diagnostics tool. Laccase is also being used as a bioremediation agent as they have been found potent enough in cleaning up herbicides pesticides and certain explosives in soil. Because of having the ability to oxidize phenolic, non-phenolic lignin-related compounds and highly fractious environmental pollutants, laccases have drawn the attention of researchers in the last few decades. Commercially, laccases have been used to determine the difference between codeine and morphine, produce ethanol and are also being employed in de-lignify woody tissues. We have revised patents related to applicability of laccases. We have revised all the patents related to its wide applicability. Conclusion: For fulfillment of these wide applications, one of the major concerns is to develop a system for efficient production of these enzymes at a broad scale. Research in the field of laccases has been accelerated because of its wide diversity, utility, and enzymology. This paper deals with recent trends in implementation of the laccases in all practical possibilities with the help of optimizing various parameters and techniques which are responsible for mass production of the enzyme in industries.


Assuntos
Biodegradação Ambiental , Lacase/química , Lignina/química , Indústria Alimentícia , Fungos/enzimologia , Lacase/genética , Oxirredutases/química , Oxirredutases/genética , Patentes como Assunto
3.
Int J Biol Macromol ; 105(Pt 1): 401-409, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28711616

RESUMO

In the present work, a potent xylanase producing fungal strain Aspergillus niger (KP874102.1) was isolated through cultural and morphological observations from soil sample of Baramura forest, Tripura west, India. 28S rDNA technique was applied for genomic identification of this fungal strain. The isolated strain was found to be phylogenetically closely related to Aspergillus niger. Kinetic constants such as Km and Vmax for extracellular xylanase were determined using various substrate such as beech wood xylan, oat spelt xylan and CM cellulose through Lineweaver-Burk plot. Km, Vmax and Kcat for beech wood xylan are found to be 2.89mg/ml, 2442U and 426178Umlmg-1 respectively. Crude enzyme did not show also CM cellulose activity. The relative efficiency of oat spelt xylan was found to be 0.819 with respect to beech wood xylan. After acid hydrolysis, enzyme was able to produce reducing sugar with 17.7, 35.5, 50.8 and 65% (w/w) from orange peel after 15, 30, 45 and 60min incubation with cellulase free xylanase and maximum reducing sugar formation rate was found to be 55.96µg/ml/min. Therefore, the Aspergillus niger (KP874102.1) is considered as a potential candidate for enzymatic hydrolysis of orange peel.


Assuntos
Aspergillus niger/citologia , Aspergillus niger/enzimologia , Citrus sinensis/química , Endo-1,4-beta-Xilanases/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Espaço Extracelular/enzimologia , Hidrólise , Resíduos Industriais , Cinética , Especificidade por Substrato , Xilanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...