Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 143(11): 1937-47, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246713

RESUMO

Ocular lens morphogenesis is a model for investigating mechanisms of cellular differentiation, spatial and temporal gene expression control, and chromatin regulation. Brg1 (Smarca4) and Snf2h (Smarca5) are catalytic subunits of distinct ATP-dependent chromatin remodeling complexes implicated in transcriptional regulation. Previous studies have shown that Brg1 regulates both lens fiber cell differentiation and organized degradation of their nuclei (denucleation). Here, we employed a conditional Snf2h(flox) mouse model to probe the cellular and molecular mechanisms of lens formation. Depletion of Snf2h induces premature and expanded differentiation of lens precursor cells forming the lens vesicle, implicating Snf2h as a key regulator of lens vesicle polarity through spatial control of Prox1, Jag1, p27(Kip1) (Cdkn1b) and p57(Kip2) (Cdkn1c) gene expression. The abnormal Snf2h(-/-) fiber cells also retain their nuclei. RNA profiling of Snf2h(-/) (-) and Brg1(-/-) eyes revealed differences in multiple transcripts, including prominent downregulation of those encoding Hsf4 and DNase IIß, which are implicated in the denucleation process. In summary, our data suggest that Snf2h is essential for the establishment of lens vesicle polarity, partitioning of prospective lens epithelial and fiber cell compartments, lens fiber cell differentiation, and lens fiber cell nuclear degradation.


Assuntos
Adenosina Trifosfatases/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Embrião de Mamíferos/metabolismo , Cristalino/citologia , Cristalino/embriologia , Animais , Autofagia , Compartimento Celular , Ciclo Celular , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição de Choque Térmico , Camundongos Knockout , Mitofagia , Modelos Biológicos , Mutação/genética , Proteínas Nucleares/metabolismo , Fator de Transcrição PAX6/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/genética
2.
J Biol Chem ; 283(15): 9681-91, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18256024

RESUMO

The biosynthesis of 60 S ribosomal subunits in Saccharomyces cerevisiae requires Tif6p, the yeast homologue of mammalian eIF6. This protein is necessary for the formation of 60 S ribosomal subunits because it is essential for the processing of 35 S pre-rRNA to the mature 25 S and 5.8 S rRNAs. In the present work, using molecular genetic and biochemical analyses, we show that Hrr25p, an isoform of yeast casein kinase I, phosphorylates Tif6p both in vitro and in vivo. Tryptic phosphopeptide mapping of in vitro phosphorylated Tif6p by Hrr25p and (32)P-labeled Tif6p isolated from yeast cells followed by mass spectrometric analysis revealed that phosphorylation occurred on a single tryptic peptide at Ser-174. Sucrose gradient fractionation and coimmunoprecipitation experiments demonstrate that a small but significant fraction of Hrr25p is bound to 66 S preribosomal particles that also contain bound Tif6p. Depletion of Hrr25p from a conditional yeast mutant that fails to phosphorylate Tif6p was unable to process pre-rRNAs efficiently, resulting in significant reduction in the formation of 25 S rRNA. These results along with our previous observations that phosphorylatable Ser-174 is required for yeast cell growth and viability, suggest that Hrr25p-mediated phosphorylation of Tif6p plays a critical role in the biogenesis of 60 S ribosomal subunits in yeast cells.


Assuntos
Proteínas de Transporte/metabolismo , Caseína Quinase I/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Fosfoproteínas/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Caseína Quinase I/genética , Fatores de Iniciação em Eucariotos/genética , Proteínas de Filamentos Intermediários/genética , Espectrometria de Massas , Mutação , Fosfoproteínas/genética , Fosforilação , Ligação Proteica/fisiologia , RNA Ribossômico/genética , Proteínas Ribossômicas , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
3.
Methods Enzymol ; 430: 179-208, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17913639

RESUMO

Initiation of translation is defined as the process by which a 40S ribosomal subunit, containing bound initiator methionyl-tRNA (Met-tRNA(i)), is positioned at the initiation AUG codon of an mRNA to form the 48S initiation complex. Subsequently, a 60S ribosomal subunit joins the 48S initiation complex to form an elongation-competent 80S initiation complex. By use of highly purified eukaryotic translation initiation factors (eIFs), ribosomes, Met-tRNA(i), mRNA, GTP as an effector molecule, and ATP as a source of energy, the initiation step of translation can be efficiently reconstituted. In this chapter, we describe the detailed procedure for efficient binding of Met-tRNA(i) to the 40S ribosomal subunit, the subsequent binding of the resulting 43S preinitiation complex to an mRNA, and scanning and positioning of the 43S complex at the AUG start codon of the mRNA to form the 48S initiation complex.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , Biossíntese de Proteínas , RNA de Transferência de Metionina/metabolismo , Ribossomos/metabolismo , Animais , Sistema Livre de Células , Códon de Iniciação , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/genética , Capuzes de RNA/metabolismo , RNA de Transferência de Metionina/química , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribossomos/química
4.
EMBO J ; 24(21): 3737-46, 2005 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-16222335

RESUMO

Genetic studies in yeast have shown that the translation initiation factor eIF5 plays an important role in the selection of the AUG start codon. In order to ensure translation fidelity, the hydrolysis of GTP bound to the 40S preinitiation complex (40S.Met-tRNA(i).eIF2.GTP), promoted by eIF5, must occur only when the complex has selected the AUG start codon. However, the mechanism that prevents the eIF5-promoted GTP hydrolysis, prior to AUG selection by the ribosomal machinery, is not known. In this work, we show that the presence of initiation factors eIF1, eIF1A and eIF3 in the 40S preinitiation complex (40S.eIF1.eIF1A.eIF3.Met-tRNA(i).eIF2.GTP) and the subsequent binding of the preinitiation complex to eIF4F bound at the 5'-cap structure of mRNA are necessary for preventing eIF5-promoted hydrolysis of GTP in the 40S preinitiation complex. This block in GTP hydrolysis is released upon AUG selection by the 40S preinitiation complex. These results, taken together, demonstrate the biochemical requirements for regulation of GTP hydrolysis and its coupling to the AUG selection process during translation initiation.


Assuntos
Códon de Iniciação/metabolismo , Fator de Iniciação 5 em Eucariotos/metabolismo , Guanosina Trifosfato/metabolismo , Iniciação Traducional da Cadeia Peptídica/fisiologia , Ribossomos/fisiologia , Animais , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Humanos , Hidrólise , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/metabolismo
5.
J Biol Chem ; 278(8): 6580-7, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12493757

RESUMO

We have examined the role of the mammalian initiation factor eIF1 in the formation of the 40 S preinitiation complex using in vitro binding of initiator Met-tRNA (as Met-tRNA(i).eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA. We observed that, although both eIF1A and eIF3 are essential to generate a stable 40 S preinitiation complex, quantitative binding of the ternary complex to 40 S subunits also required eIF1. The 40 S preinitiation complex contained, in addition to eIF3, both eIF1 and eIF1A in a 1:1 stoichiometry with respect to the bound Met-tRNA(i). These three initiation factors also bind to free 40 S subunits, and the resulting complex can act as an acceptor of the ternary complex to form the 40 S preinitiation complex (40 S.eIF3.eIF1.eIF1A.Met-tRNA(i).eIF2.GTP). The stable association of eIF1 with 40 S subunits required the presence of eIF3. In contrast, the binding of eIF1A to free 40 S ribosomes as well as to the 40 S preinitiation complex was stabilized by the presence of both eIF1 and eIF3. These studies suggest that it is possible for eIF1 and eIF1A to bind the 40 S preinitiation complex prior to mRNA binding.


Assuntos
Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica/fisiologia , Fatores de Iniciação de Peptídeos/metabolismo , RNA de Transferência de Metionina/metabolismo , Animais , Fator de Iniciação 1 em Eucariotos/isolamento & purificação , Fator de Iniciação 3 em Eucariotos/isolamento & purificação , Guanosina Trifosfato/metabolismo , Cinética , Fígado/metabolismo , Fatores de Iniciação de Peptídeos/isolamento & purificação , Ligação Proteica , Coelhos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribossomos/metabolismo
6.
Nucleic Acids Res ; 30(5): 1154-62, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11861906

RESUMO

Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S*eIF3*AUG*Met-tRNA(f)*eIF2*GTP) and, acting as a GTPase activating protein, promotes the hydrolysis of bound GTP. We isolated a protein kinase from rabbit reticulocyte lysates on the basis of its ability to phosphorylate purified bacterially expressed recombinant rat eIF5. Physical, biochemical and antigenic properties of this kinase identify it as casein kinase II (CK II). Mass spectrometric analysis of maximally in vitro phosphorylated eIF5 localized the major phosphorylation sites at Ser-387 and Ser-388 near the C-terminus of eIF5. These serine residues are embedded within a cluster of acidic amino acid residues and account for nearly 90% of the total in vitro eIF5 phosphorylation. A minor phosphorylation site at Ser-174 was also observed. Alanine substitution mutagenesis at Ser-387 and Ser-388 of eIF5 abolishes phosphorylation by the purified kinase as well as by crude reticulocyte lysates. The same mutations also abolish phosphorylation of eIF5 when transfected into mammalian cells suggesting that CK II phosphorylates eIF5 at these two serine residues in vivo as well.


Assuntos
Fatores de Iniciação de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Sequência de Aminoácidos , Animais , Caseína Quinase II , Fator de Iniciação 5 em Eucariotos , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Fosforilação , Fosfosserina/metabolismo , Proteínas Serina-Treonina Quinases/isolamento & purificação , Coelhos , Ratos , Proteínas Recombinantes/metabolismo , Reticulócitos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...