Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Parasitol ; 239: 108286, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660529

RESUMO

Leishmania donovani, an obligate intracellular parasite, the causative agent of visceral leishmaniasis is known to subvert the host immune system for its own survival. Although the precise mechanism is still unknown, emerging evidences indicate that L. donovani efficiently suppress MHC I mediated antigen presentation, rendering inadequate CD8+T cell activation and weakening host defense against parasite. The role of transcription factor EB (TFEB) was recognized in modulating antigen presentation besides its role in lysosomal biogenesis and function. Here, we investigated the regulatory role of TFEB in the modulation of presentation of Leishmania antigen in host tissue. Our results showed an increased expression of TFEB after Leishmania infection both in vitro and in vivo and there was a decrease in the expression of Th-1 cytokine IFNγ along with MHC class I and CD8+T cells indicating attenuation of cell mediated immunity and possibly MHC I restricted antigen presentation. Silencing of TFEB resulted in increased expression of IFNγ and MHC I along with increased CD8+T cells population without any significant change in CD4+T cell number. We also observed a decreased parasite burden in TFEB silenced condition which indicates enhanced parasite clearance by alteration of immunological response possibly through induction of presentation of Leishmania antigen through MHC I. The present study explains the role of TFEB silencing in parasite clearance through regulating the antigen presentation of Leishmania antigen thereby promises to formulate a potential therapeutic strategy against visceral leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Animais , Apresentação de Antígeno , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/imunologia , Controle de Doenças Transmissíveis , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Transcrição/imunologia
2.
Exp Parasitol ; 217: 107948, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32698076

RESUMO

Immunomodulation is an emerging concept to combat infection in recent years. Immunomodulators like arabinosylated-lipoarabinomannan (Ara-LAM) and glycyrrhizic-acid (GA) possess anti-leishmanial property, whereas sodium-antimony-gluconate (SAG) is still considered as the first choice for chemotherapy against leishmaniasis. During infection, invasion of Leishmania donovani needs the potential requirement of Ca2+, which is further responsible for apoptosis in intracellular amastigotes. However, suppression of elevated intracellular calcium by the activation of plasma-membrane-calcium-ATPase (PMCA4) facilitates survival of L. donovani in the host. In the present study, SAG, Ara-LAM, and GA were found to evoke significant increase in intracellular Ca2+ in L. donovani infected macrophages by inhibiting PMCA4. Moreover, PMCA4 inhibition by TFP or PMCA4 siRNA elevated the level of PKCß, whereas calcium-independent upregulation of PKCζ remained unchanged in infected macrophages. Furthermore, application of immunomodulators in infected macrophages resulted in down-regulation of PKCζ, conversion of anti-inflammatory to pro-inflammatory cytokines and inhibition of PMCA4. Plasma membrane-associated ceramide which is known to be elevated during leishmaniasis, triggered upregulation of PMCA4 via PKCζ activation. Interestingly, immunomodulators attenuated ceramide generation, which resulted into reduced PKCζ activation leading to the decreased PMCA expression in infected macrophages. Therefore, our study elucidated the efficacy of SAG, Ara-LAM, and GA in the reduction of parasite burden in macrophages by suppressing PMCA activation through inhibition of ceramide mediated upregulation of PKCζ.


Assuntos
Antiprotozoários/uso terapêutico , ATPases Transportadoras de Cálcio/sangue , Membrana Celular/enzimologia , Fatores Imunológicos/farmacologia , Leishmania donovani/efeitos dos fármacos , Leishmaniose Visceral/tratamento farmacológico , Animais , Gluconato de Antimônio e Sódio/farmacologia , Gluconato de Antimônio e Sódio/uso terapêutico , Antiprotozoários/farmacologia , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Ceramidas/metabolismo , Meios de Cultura Livres de Soro , Densitometria , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Imipramina/farmacologia , Immunoblotting , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/uso terapêutico , Macrófagos/fisiologia , Camundongos , RNA de Protozoário/genética , RNA de Protozoário/isolamento & purificação , RNA Interferente Pequeno/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Reversa , Transfecção
3.
Food Funct ; 4(6): 889-98, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23644882

RESUMO

Consumption of a high-fat diet (HFD) promotes reactive oxygen species (ROS) which ultimately trigger inflammation. The aim of this study was to investigate the role of Moringa oleifera leaf extract (MoLE) and its active component quercetin in preventing NF-κB-mediated inflammation raised by short-term HFD. Quercetin was found to be one of the major flavonoid components from HPLC of MoLE. Swiss mice were fed for 15 days on HFD, both with or without MoLE/quercetin. The antioxidant profile was estimated from liver homogenate. NF-κB and some relevant inflammatory markers were evaluated by immunoblotting, RT-PCR and ELISA. Significantly (P < 0.05) lower antioxidant profile and higher lipid peroxidation was found in HFD group compared to control (P < 0.05). Increased nuclear import of NF-κB and elevated expressions of pro-inflammatory markers were further manifestations in the HFD group. All these changes were reversed in the MoLE/quercetin-treated groups with significant improvement of antioxidant activity compared to the HFD group. MoLE was found to be rich in polyphenols and both MoLE and quercetin showed potent free radical and hydroxyl radical quenching activity. Thus, the present study concluded that short-term treatment with MoLE and its constituent quercetin prevent HFD-mediated inflammation in mice.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Inflamação/tratamento farmacológico , Moringa oleifera/química , Extratos Vegetais/administração & dosagem , Quercetina/administração & dosagem , Animais , Humanos , Inflamação/etiologia , Inflamação/genética , Inflamação/imunologia , Fígado/imunologia , Masculino , Camundongos , NF-kappa B/genética , NF-kappa B/imunologia
4.
J Antimicrob Chemother ; 67(8): 1905-14, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22589456

RESUMO

OBJECTIVES: The aim of the present study was to characterize glycyrrhizic acid (GA) and assess its immunomodulatory potential in a model of experimental visceral leishmaniasis. METHODS: The antileishmanial activity of GA was tested in an amastigote-macrophage model and its non-cytotoxic dose was measured by a cell viability assay. To understand the effector mechanism of GA-treated macrophages against leishmanial parasites, real-time PCR analysis of inducible nitric oxide synthase 2 (iNOS2) was carried out followed by measurement of nitric oxide generation by Griess reagent. The effect of GA on the production of cytokines, such as interleukin (IL)-12, tumour necrosis factor (TNF)-α, IL-10 and transforming growth factor (TGF)-ß, was measured by ELISA (protein) and real-time PCR. The expression of iNOS2 and cyclooxygenase-2 (Cox-2) was studied by western blotting. The parasite burden of the liver and spleen following GA treatment was determined by the stamp-smear method, and T cell proliferation was assessed via [³H]thymidine uptake, measured by a liquid scintillation counter. RESULTS: Results showed that GA treatment caused an enhanced expression of iNOS2 along with inhibition of Cox-2 in Leishmania donovani-infected macrophages. GA treatment in infected macrophages enhanced the expression of IL-12 and TNF-α, concomitant with a down-regulation of IL-10 and TGF-ß. GA increased macrophage effector responses via inhibition of Cox-2-mediated prostaglandin E2 release in L. donovani-infected macrophages. GA also decreased hepatic and splenic parasite burden and increased T cell proliferation in Leishmania-infected BALB/c mice. CONCLUSIONS: These results provide a mechanistic understanding of GA-mediated protection against leishmanial parasites within the host.


Assuntos
Anti-Inflamatórios/administração & dosagem , Ácido Glicirrízico/administração & dosagem , Fatores Imunológicos/administração & dosagem , Leishmania donovani/patogenicidade , Leishmaniose Visceral/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/biossíntese , Citocinas/metabolismo , Dinoprostona/metabolismo , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Ácido Glicirrízico/farmacologia , Fatores Imunológicos/farmacologia , Leishmania donovani/imunologia , Fígado/parasitologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Baço/parasitologia , Resultado do Tratamento
5.
PLoS One ; 6(9): e24141, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21935379

RESUMO

The parasitic protozoan Leishmania donovani is the causative organism for visceral leishmaniasis (VL) which persists in the host macrophages by deactivating its signaling machinery resulting in a critical shift from proinflammatory (Th1) to an anti-inflammatory (Th2) response. The severity of this disease is mainly determined by the production of IL-12 and IL-10 which could be reversed by use of effective immunoprophylactics. In this study we have evaluated the potential of Arabinosylated Lipoarabinomannan (Ara-LAM), a cell wall glycolipid isolated from non pathogenic Mycobacterium smegmatis, in regulating the host effector response via effective regulation of mitogen-activated protein kinases (MAPK) signaling cascades in Leishmania donovani infected macrophages isolated from BALB/C mice. Ara-LAM, a Toll-like receptor 2 (TLR2) specific ligand, was found to activate p38 MAPK signaling along with subsequent abrogation of extracellular signal-regulated kinase (ERKs) signaling. The use of pharmacological inhibitors of p38MAPK and ERK signaling showed the importance of these signaling pathways in the regulation of IL-10 and IL-12 in Ara-LAM pretreated parasitized macrophages. Molecular characterization of this regulation of IL-10 and IL-12 was revealed by chromatin immunoprecipitation assay (CHIP) which showed that in Ara-LAM pretreated parasitized murine macrophages there was a significant induction of IL-12 by selective phosphorylation and acetylation of histone H3 residues at its promoter region. While, IL-10 production was attenuated by Ara-LAM pretreatment via abrogation of histone H3 phosphorylation and acetylation at its promoter region. This Ara-LAM mediated antagonistic regulations in the induction of IL-10 and IL-12 genes were further correlated to changes in the transcriptional regulators Signal transducer and activator of transcription 3 (STAT3) and Suppressor of cytokine signaling 3 (SOCS3). These results demonstrate the crucial role played by Ara-LAM in regulating the MAPK signaling pathway along with subsequent changes in host effector response during VL which might provide crucial clues in understanding the Ara-LAM mediated protection during Leishmania induced pathogenesis.


Assuntos
Arabinose/química , Cromatina/química , Leishmania donovani/metabolismo , Lipopolissacarídeos/química , Sistema de Sinalização das MAP Quinases , Células Th1/citologia , Células Th2/citologia , Animais , Histonas/metabolismo , Hibridomas/metabolismo , Inflamação , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Ligantes , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fator de Transcrição STAT3/metabolismo , Linfócitos T/citologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Indian J Exp Biol ; 47(6): 489-97, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19634715

RESUMO

Visceral leishmaniasis is characterized by severe immune suppression of the host. This suppression of the host immune system is primarily mediated by the immunosuppressive cytokine Interleukin-10 (IL-10), whose levels are significantly upregulated during leishmaniasis. This immune suppression is reflected at the level of T-cell dysfunction and abrogation of leishmaniacidal molecules along with a dampened Th1 cytokine response. In the present study, we showed in vivo neutralization of IL-10 by administration of anti IL-10 monoclonal antibodies (mAb) could confer protection against leishmanial pathogenesis. This protective response was primarily mediated by a strong induction of T cell proliferation along with a Th1 biased cytokine response which was further aided by the generation of, leishmanicidal molecules, nitric oxide.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Citocinas/imunologia , Interleucina-10/imunologia , Leishmaniose Visceral/tratamento farmacológico , Leishmaniose Visceral/prevenção & controle , Óxido Nítrico/imunologia , Células Th1/imunologia , Animais , Anticorpos Monoclonais/imunologia , Imunoglobulina G/imunologia , Leishmania donovani/imunologia , Leishmaniose Visceral/imunologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...