Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemistryOpen ; 11(6): e202200033, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35642135

RESUMO

We report, for the first time, a detailed crystallographic study of the supramolecular arrangement for a set of zinc(II) Schiff base complexes containing the ligand 2,6-bis((E)-((2-(dimethylamino)ethyl)imino)methyl)-4-R-phenol], where R=methyl/tert-butyl/chloro. The supramolecular study acts as a pre-screening tool for selecting the compartmental ligand R of the Schiff base for effective binding with a targeted protein, bovine serum albumin (BSA). The most stable hexagonal arrangement of the complex [Zn-Me] (R=Me) stabilises the ligand with the highest FMO energy gap (ΔE=4.22 eV) and lowest number of conformations during binding with BSA. In contrast, formation of unstable 3D columnar vertebra for [Zn-Cl] (R=Cl) tend to activate the system with lowest FMO gap (3.75 eV) with highest spontaneity factor in molecular docking. Molecular docking analyses reported in terms of 2D LigPlot+ identified site A, a cleft of domains IB, IIIA and IIIB, as the most probable protein binding site of BSA. Arg144, Glu424, Ser428, Ile455 and Lys114 form the most probable interactions irrespective of the type of compartmental ligands R of the Schiff base whereas Arg185, Glu519, His145, Ile522 act as the differentiating residues with ΔG=-7.3 kcal mol-1 .


Assuntos
Bases de Schiff , Zinco , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Bases de Schiff/química , Bases de Schiff/metabolismo , Soroalbumina Bovina/química
2.
ACS Omega ; 3(10): 13343-13353, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30411036

RESUMO

A series of multinuclear heterometallic Cu-Zn complexes of molecular formula [(CuL)2Zn(dca)2] (1), [(CuL)2Zn(NO3)2] (2), [(CuL)2Zn2(Cl)4] (3), and [(CuL)2Zn2(NO2)4] (4) have been synthesized by reacting [CuL] as a "metalloligand (ML)" (where HL = N,N'-bis(5-chloro-2-hydroxybenzylidene)-2,2-dimethylpropane-1,3-diamine) and by varying the anions or coligands using the same molar ratios of the reactants. All of the four products including the ML have been characterized by infrared and UV-vis spectroscopies and elemental and single-crystal X-ray diffraction analyses. By varying the anions, different structures and topologies are obtained which we have tried to rationalize by means of thorough density functional theory calculations. All of the complexes (1-4) have now been applied for several biological investigations to verify their therapeutic worth. First, their cytotoxicity properties were assessed against HeLa human cervical carcinoma along with the determination of IC50 values. The study was extended with extensive DNA and protein binding experiments followed by detailed fluorescence quenching study with suitable reagents to comprehend the mechanistic pathway. From all of these biological studies, it has been found that all of these heterometallic complexes show more than a few fold improvement of their therapeutic values as compared to the similar homometallic ones probably because of the simultaneous synergic effect of copper and zinc. Among all of the four heterometallic complexes, complex 3 exhibits highest binding constants and IC50 values suggest for their better interaction toward the biological targets and hence have better clinical importance.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 194: 222-229, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29413354

RESUMO

Three Schiff base ligands such as 2­[(2­Hydroxy­3­methoxy­benzylidene)­amino]­2­hydroxymethyl­propane­1,3­diol (HL1), 2­[(2­Hydroxy­benzylidene)­amino]­2­hydroxymethyl­propane­1,3­diol (HL2), 2­[(3,5­Dichloro­2­hydroxy­benzylidene)­amino]­2­hydroxymethyl­propane­1,3­diol (HL3) have been synthesized by condensation of aldehydes (such as 3,5­Dichloro­2­hydroxy benzaldehyde, 2­Hydroxy­benzaldehyde, and 2­Hydroxy­3­methoxy­benzaldehyde) with Tris­(hydroxymethyl)amino methane and characterized by IR, UV-vis and 1H NMR spectroscopy. Then all these three ligands have been used to prepare Pb(II) complexes by reaction with lead(II) acetate tri-hydrate in methanol. In view of analytical and spectral (IR, UV-vis and Mass) studies, it has been concluded that, except HL2, other two ligands form 1:1 metal complexes (1 and 3) with lead. Between two complexes, complex 3 is highly fluorescent and this property has been used to identify the pollutant nitroaromatics. Finally, the quenching mechanism has been established by means of spectroscopic investigation.

4.
Inorg Chem ; 56(21): 12893-12901, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29058885

RESUMO

A tridentate N,N,O donor ligand 2,4-dichloro-2-[(2-piperazine-4-yl-ethylimino)-methyl]-phenol (HL) was designed, and eight new ZnII and CdII complexes, namely, [Zn(LH)(SCN)2] (1), [Zn(LH)(N3)2] (2), [Zn(LH)(NO2)2] (3), [Zn(LH)(dca)(OAc)] (4), [Cd2(LH)2(SCN)4] (5), [Cd(LH)(N3)2] (6), [Cd(LH)(NO2)2] (7), and [Cd(LH)(dca)(OAc)] (8) [where dca = dicyanamide anion] were synthesized. Five of them (1, 2, 4, 5, 7) were structurally characterized through single-crystal X-ray diffraction analysis. H-Bonding interactions are found to be the major stabilizing factor for crystallization in the solid state. Experimental and computational studies were performed in cooperation to provide a rationalization of the photoluminescence properties of those complexes. The quantum yields are anion-dependent, with enhanced efficiencies in the following order: LH < Cd-SCN(5) < Cd-dca(8) < Cd-N3(6) < Cd-NO2(7) < Zn-dca(4) < Zn-N3(2) < ZnNO2(3) < ZnSCN(1). By using quantum chemical calculations we rationalized the above trends. Moreover, the diverse lifetimes observed for those eight complexes were also quantitatively explained by considering the subtle competition between different photo-deactivation pathways.

5.
Dalton Trans ; 45(2): 742-52, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26630495

RESUMO

Two "end-off" compartmental ligands, 2-formyl-4-chloro-6-N-ethylmorpholine-iminomethyl-phenol (HL1) and 2-formyl-4-methyl-6-N-ethylpyrrolidine-iminomethyl-phenol (HL2) have been designed and three complexes of Mn(ii), one mono-, one di- and a polynuclear, namely Mn(L1)(SCN)2(H2O)] (), [Mn2(L1)(OAc)2](BPh4)] (), and [Mn2(L2)(OAc)2(dca)]n () have been synthesized and structurally characterized. Variable temperature magnetic studies of and have been performed and data analyses reveal that Mn centers are antiferromagnetic coupled with J = -9.15 cm(-1) and J = -46.89, respectively. Catecholase activity of all the complexes has been investigated using 3,5-di-tert-butyl catechol (3,5-DTBC). All are highly active and the activity order on the basis of the kcat value is > > . In order to unveil whether the metal centered redox participation or the radical pathway is responsible for the catecholase-like activity of the complexes, detailed EPR and cyclic voltammetric (CV) studies have been performed. In addition to the six-line EPR spectrum characteristic to Mn(ii), an additional peak at g ∼ 2 is observed when the EPR study is done with the mixture of 3,5-DTBC and the catalyst, suggesting the formation of an organic radical, most likely ligand centered. The CV experiment with the mixture of 3,5-DTBC and the catalyst reveals ligand centered reduction rather than reduction of Mn(ii) to Mn(i). It is thus inferred that complexes show catecholase-like activity due to radical generation.


Assuntos
Complexos de Coordenação/síntese química , Manganês/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Catálise , Catecol Oxidase/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Cristalografia por Raios X , Técnicas Eletroquímicas , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Conformação Molecular
6.
Dalton Trans ; 44(46): 20032-44, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26527456

RESUMO

Three dinuclear zinc(II) complexes with "end-off" compartmental ligands, namely 2,6-bis(N-ethylmorpholine-iminomethyl)-4-R-phenol (R = -CH3, Cl, (t)Bu) have been synthesized with the aim of exploring the role of the para substituent present in the ligand backbone in controlling the structural diversity, photophysical properties and different weak interactions of the complexes. All three species, with the general formula {2[Zn2L(CH3COO)2][Zn(NCS)4]}, show the complex anion Zn(NCS)4(2-) as a common structural feature decisive for crystallization. Interestingly, all of them possess several non-covalent weak interactions where the nature of the "R" group plays an essential role as exposed by DFT study. Besides exhibiting fluorescence behavior, the complexes also show para substitution controlled phosphorescence both at room and low temperature. Anisotropy studies suggest the existence of complexes 2 and 3 as dimers in solution. The origins of the unusual room temperature phosphorescence and fluorescence behavior of the complexes have been rationalized in the light of theoretical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...