Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 17(4): 775-788, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35334217

RESUMO

The generation of retinal organoids from human pluripotent stem cells (hPSC) is now a well-established process that in part recapitulates retinal development. However, hPSC-derived photoreceptors that exhibit well-organized outer segment structures have yet to be observed. To facilitate improved inherited retinal disease modeling, we determined conditions that would support outer segment development in maturing hPSC-derived photoreceptors. We established that the use of antioxidants and BSA-bound fatty acids promotes the formation of membranous outer segment-like structures. Using new protocols for hPSC-derived retinal organoid culture, we demonstrated improved outer segment formation for both rod and cone photoreceptors, including organized stacked discs. Using these enhanced conditions to generate iPSC-derived retinal organoids from patients with X-linked retinitis pigmentosa, we established robust cellular phenotypes that could be ameliorated following adeno-associated viral vector-mediated gene augmentation. These findings should aid both disease modeling and the development of therapeutic approaches for the treatment of photoreceptor disorders.


Assuntos
Organoides , Células-Tronco Pluripotentes , Antioxidantes/farmacologia , Suplementos Nutricionais , Humanos , Lipídeos , Retina , Células Fotorreceptoras Retinianas Cones
2.
Sci Rep ; 9(1): 18907, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827194

RESUMO

An increasing volume of data suggests that changes in cellular metabolism have a major impact on the health of tissues and organs, including in the auditory system where metabolic alterations are implicated in both age-related and noise-induced hearing loss. However, the difficulty of access and the complex cyto-architecture of the organ of Corti has made interrogating the individual metabolic states of the diverse cell types present a major challenge. Multiphoton fluorescence lifetime imaging microscopy (FLIM) allows label-free measurements of the biochemical status of the intrinsically fluorescent metabolic cofactors NADH and NADPH with subcellular spatial resolution. However, the interpretation of NAD(P)H FLIM measurements in terms of the metabolic state of the sample are not completely understood. We have used this technique to explore changes in metabolism associated with hearing onset and with acquired (age-related and noise-induced) hearing loss. We show that these conditions are associated with altered NAD(P)H fluorescence lifetimes, use a simple cell model to confirm an inverse relationship between τbound and oxidative stress, and propose such changes as a potential index of oxidative stress applicable to all mammalian cell types.


Assuntos
Cóclea/metabolismo , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Neurossensorial/metabolismo , NADP/metabolismo , Estresse Oxidativo/fisiologia , Envelhecimento/metabolismo , Animais , Células HEK293 , Humanos , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Espécies Reativas de Oxigênio/metabolismo
3.
Front Cell Neurosci ; 11: 94, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28503132

RESUMO

Aminoglycosides (AGs) are widely used antibiotics because of their low cost and high efficacy against gram-negative bacterial infection. However, AGs are ototoxic, causing the death of sensory hair cells in the inner ear. Strategies aimed at developing or discovering agents that protect against aminoglycoside ototoxicity have focused on inhibiting apoptosis or more recently, on preventing antibiotic uptake by the hair cells. Recent screens for ototoprotective compounds using the larval zebrafish lateral line identified phenoxybenzamine as a potential protectant for aminoglycoside-induced hair cell death. Here we used live imaging of FM1-43 uptake as a proxy for aminoglycoside entry, combined with hair-cell death assays to evaluate whether phenoxybenzamine can protect mammalian cochlear hair cells from the deleterious effects of the aminoglycoside antibiotic neomycin. We show that phenoxybenzamine can block FM1-43 entry into mammalian hair cells in a reversible and dose-dependent manner, but pre-incubation is required for maximal inhibition of entry. We observed differential effects of phenoxybenzamine on FM1-43 uptake in the two different types of cochlear hair cell in mammals, the outer hair cells (OHCs) and inner hair cells (IHCs). The requirement for pre-incubation and reversibility suggests an intracellular rather than an extracellular site of action for phenoxybenzamine. We also tested the efficacy of phenoxybenzamine as an otoprotective agent. In mouse cochlear explants the hair cell death resulting from 24 h exposure to neomycin was steeply dose-dependent, with 50% cell death occurring at ~230 µM for both IHC and OHC. We used 250 µM neomycin in subsequent hair-cell death assays. At 100 µM with 1 h pre-incubation, phenoxybenzamine conferred significant protection to both IHCs and OHCs, however at higher concentrations phenoxybenzamine itself showed clear signs of ototoxicity and an additive toxic effect when combined with neomycin. These data do not support the use of phenoxybenzamine as a therapeutic agent in mammalian inner ear. Our findings do share parallels with the observations from the zebrafish lateral line model but they also highlight the necessity for validation in the mammalian system and the potential for differential effects on sensory hair cells from different species, in different systems and even between cells in the same organ.

4.
Front Cell Neurosci ; 9: 143, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972783

RESUMO

Glutathione (GSH) is the major scavenger of reactive oxygen species (ROS) inside cells. We used live confocal imaging in order to clarify the role of GSH in the biology of the organ of Corti, the sensory epithelium of the cochlea, before, during and after the onset of hearing and in ~1 year old mice. GSH content was measured using monochlorobimane (MCB), a non-fluorescent cell permeant bimane that reacts with GSH, forming a fluorescent adduct through a reaction catalyzed by glutathione-S-transferase. GSH content increased significantly in inner hair cells during maturation in young adult animals, whereas there was no significant change in the outer hair cells. However, the GSH content in inner hair cells was significantly reduced in ~1 year old mice. The GSH content of supporting cells was comparatively stable over these ages. To test whether the GSH content played a significant protective role during ototoxicity, GSH synthesis was inhibited by buthionine sulfoximine (BSO) in organotypic cochlear explant cultures from immature mice. BSO treatment alone, which reduced GSH by 65 and 85% in inner hair cells and outer hair cells respectively, did not cause any significant cell death. Surprisingly, GSH depletion had no significant effect on hair cell survival even during exposure to the ototoxic aminoglycoside neomycin. These data suggest that the involvement of ROS during aminoglycoside-induced hair cell death is less clear than previously thought and requires further investigation.

5.
Proc Natl Acad Sci U S A ; 109(35): 14013-8, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22891314

RESUMO

Phosphatidylinositol phosphate kinase type 1γ (PIPKIγ) is a key enzyme in the generation of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)] and is expressed at high levels in the nervous system. Homozygous knockout mice lacking this enzyme die postnatally within 24 h, whereas PIPKIγ(+/-) siblings breed normally and have no reported phenotype. Here we show that adult PIPKIγ(+/-) mice have dramatically elevated hearing thresholds for high-frequency sounds. During the first postnatal week we observed a reduction of ATP-dependent Ca(2+) signaling activity in cochlear nonsensory cells. Because Ca(2+) signaling under these conditions depends on inositol-1,4,5-trisphosphate generation from phospholipase C (PLC)-dependent hydrolysis of PI(4,5)P(2), we conclude that (i) PIPKIγ is primarily responsible for the synthesis of the receptor-regulated PLC-sensitive PI(4,5)P(2) pool in the cell syncytia that supports auditory hair cells; (ii) spatially graded impairment of this signaling pathway in cochlear nonsensory cells causes a selective alteration in the acquisition of hearing in PIPKIγ(+/-) mice. This mouse model also suggests that PIPKIγ may determine the level of gap junction contribution to cochlear development.


Assuntos
Sinalização do Cálcio/fisiologia , Surdez/genética , Surdez/metabolismo , Órgão Espiral/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Conexinas/genética , Conexinas/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Junções Comunicantes/metabolismo , Células Ciliadas Auditivas/metabolismo , Audição/fisiologia , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Órgão Espiral/crescimento & desenvolvimento , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Percepção da Altura Sonora/fisiologia
6.
Purinergic Signal ; 6(2): 167-87, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20806010

RESUMO

UNLABELLED: Connexin 26 (Cx26) and connexin 30 (Cx30) form hemichannels that release ATP from the endolymphatic surface of cochlear supporting and epithelial cells and also form gap junction (GJ) channels that allow the concomitant intercellular diffusion of Ca(2+) mobilizing second messengers. Released ATP in turn activates G-protein coupled P2Y(2) and P2Y(4) receptors, PLC-dependent generation of IP(3), release of Ca(2+) from intracellular stores, instigating the regenerative propagation of intercellular Ca(2+) signals (ICS). The range of ICS propagation is sensitive to the concentration of extracellular divalent cations and activity of ectonucleotidases. Here, the expression patterns of Cx26 and Cx30 were characterized in postnatal cochlear tissues obtained from mice aged between P5 and P6. The expression gradient along the longitudinal axis of the cochlea, decreasing from the basal to the apical cochlear turn (CT), was more pronounced in outer sulcus (OS) cells than in inner sulcus (IS) cells. GJ-mediated dye coupling was maximal in OS cells of the basal CT, inhibited by the nonselective connexin channel blocker carbenoxolone (CBX) and absent in hair cells. Photostimulating OS cells with caged inositol (3,4,5) tri-phosphate (IP(3)) resulted in transfer of ICS in the lateral direction, from OS cells to IS cells across the hair cell region (HCR) of medial and basal CTs. ICS transfer in the opposite (medial) direction, from IS cells photostimulated with caged IP(3) to OS cells, occurred mostly in the basal CT. In addition, OS cells displayed impressive rhythmic activity with oscillations of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) coordinated by the propagation of Ca(2+) wavefronts sweeping repeatedly through the same tissue area along the coiling axis of the cochlea. Oscillations evoked by uncaging IP(3) or by applying ATP differed greatly, by as much as one order of magnitude, in frequency and waveform rise time. ICS evoked by direct application of ATP propagated along convoluted cellular paths in the OS, which often branched and changed dynamically over time. Potential implications of these findings are discussed in the context of developmental regulation and cochlear pathophysiology. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11302-010-9192-9) contains supplementary material, which is available to authorized users.

7.
Hum Mol Genet ; 19(24): 4759-73, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20858605

RESUMO

Mutations in the GJB2 and GJB6 genes, respectively, coding for connexin26 (Cx26) and connexin30 (Cx30) proteins, are the most common cause for prelingual non-syndromic deafness in humans. In the inner ear, Cx26 and Cx30 are expressed in different non-sensory cell types, where they largely co-localize and may form heteromeric gap junction channels. Here, we describe the generation and characterization of a mouse model for human bilateral middle/high-frequency hearing loss based on the substitution of an evolutionarily conserved threonine by a methionine residue at position 5 near the N-terminus of Cx30 (Cx30T5M). The mutation was inserted in the mouse genome by homologous recombination in mouse embryonic stem cells. Expression of the mutated Cx30T5M protein in these transgenic mice is under the control of the endogenous Cx30 promoter and was analysed via activation of the lacZ reporter gene. When probed by auditory brainstem recordings, Cx30(T5M/T5M) mice exhibited a mild, but significant increase in their hearing thresholds of about 15 dB at all frequencies. Immunolabelling with antibodies to Cx26 or Cx30 suggested normal location of these proteins in the adult inner ear, but western blot analysis showed significantly down-regulated the expression levels of Cx26 and Cx30. In the developing cochlea, electrical coupling, probed by dual patch-clamp recordings, was normal. However, transfer of the fluorescent tracer calcein between cochlear non-sensory cells was reduced, as was intercellular Ca(2+) signalling due to spontaneous ATP release from connexin hemichannels. Our findings link hearing loss to decreased biochemical coupling due to the point-mutated Cx30 in mice.


Assuntos
Cóclea/patologia , Cóclea/fisiopatologia , Conexinas/genética , Surdez/genética , Perda Auditiva Bilateral/genética , Mutação/genética , Trifosfato de Adenosina/metabolismo , Envelhecimento/patologia , Animais , Sinalização do Cálcio , Cóclea/crescimento & desenvolvimento , Conexina 26 , Conexina 30 , Surdez/complicações , Surdez/fisiopatologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Recuperação de Fluorescência Após Fotodegradação , Técnicas de Introdução de Genes , Perda Auditiva Bilateral/complicações , Perda Auditiva Bilateral/fisiopatologia , Humanos , Immunoblotting , Camundongos , Órgão Espiral/metabolismo , Órgão Espiral/patologia , Órgão Espiral/fisiopatologia , Permeabilidade , Recombinação Genética/genética
8.
Expert Opin Ther Pat ; 19(11): 1603-13, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19852719

RESUMO

BACKGROUND: RNA and DNA aptamers recognize their targets with high specificity and affinity. These aptamers can be developed against almost any target protein through iterative cycles of in vitro screening of a combinatorial oligonucleotide library for target binding. Aptamer sequences from the final pool of in vitro selection are screened for pharmacological activity and possible medical applications. METHODS: Chemical modifications and improvements of the identification of aptamer selection procedures made aptamers rival antibodies in diagnostic and therapeutic applications. This article reviews recent literature and patents and discusses the properties of aptamers as high-affinity and specificity target binders as well as their stability in biological fluids that turns them into therapeutic agents. CONCLUSION: The development of aptamers into compounds with therapeutic and diagnostic compounds has resulted in patents protecting the sequences and the use of these oligonucleotides. Several of these patented aptamers are currently being tested in Phase I or II clinical trials. Moreover, an anti-VEGF aptamer has already been approved by the FDA for treatment of age-related macular degeneration in humans.


Assuntos
Aptâmeros de Nucleotídeos , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Animais , Aptâmeros de Nucleotídeos/uso terapêutico , Sequência de Bases , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Humanos , Patentes como Assunto
9.
J Pharm Biomed Anal ; 44(3): 701-10, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17481842

RESUMO

The purinergic receptor signaling system plays an important role in communication between cells in the nervous system and opens new opportunities for screening of potential drugs. Our objective was to explore the pharmacological properties and establish a new methodology for ligand screening for the P2X2 receptor, which has been developed by the combinatorial library approach Systematic Evolution of Ligands by Exponential enrichment (SELEX). To this end, membranes of 1321N1 cells stably transfected with rat P2X2 receptors were resuspended in 2% cholate detergent and subsequently coupled onto an immobilized artificial membrane (IAM). The IAM-cholate-P2X2 mixture was then dialyzed, centrifuged and packed into a FPLC column. Equilibrium binding to the receptor and competition between ATP and the purinergic antagonists suramin and 2'3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP) were analyzed by a chromatographic assay using 32P alpha ATP as a radioligand. Our data indicate that suramin does not compete with ATP for the ligand binding site and TNP-ATP is a competitive antagonist, confirming previous studies [C.A. Trujillo, A.A. Nery, A.H. Martins, P. Majumder, F.A. Gonzalez, H. Ulrich, Biochemistry 45 (2006) 224-233]. In addition, we demonstrate that this assay can be used in in vitro selection procedures for RNA aptamers binding to P2X2 receptors. The results demonstrate that the receptor can be immobilized in a stable format and reused over an extended period of time, facilitating the exploration of ligand-receptor interactions and screening of combinatorial pools for possible ligands.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Cromatografia de Afinidade/métodos , Receptores Purinérgicos P2/metabolismo , Suramina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Astrocitoma/patologia , Ligação Competitiva , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Corantes Fluorescentes/metabolismo , Humanos , Ligantes , Modelos Biológicos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Antagonistas do Receptor Purinérgico P2 , Ratos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X2 , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Técnica de Seleção de Aptâmeros , Transfecção
10.
Purinergic Signal ; 3(4): 317-31, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18404445

RESUMO

Ionotropic P2X and metabotropic P2Y purinergic receptors are expressed in the central nervous system and participate in the synaptic process particularly associated with acetylcholine, GABA, and glutamate neurotransmission. As a result of activation, the P2 receptors promote the elevation of free intracellular calcium concentration as the main signaling pathway. Purinergic signaling is present in early stages of embryogenesis and is involved in processes of cell proliferation, migration, and differentiation. The use of new techniques such as knockout animals, in vitro models of neuronal differentiation, antisense oligonucleotides to induce downregulation of purinergic receptor gene expression, and the development of selective inhibitors for purinergic receptor subtypes contribute to the comprehension of the role of purinergic signaling during neurogenesis. In this review, we shall discuss the participation of purinergic receptors in developmental processes and in brain physiology, including neuron-glia interactions and pathophysiology.

11.
Comb Chem High Throughput Screen ; 9(8): 619-32, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17017882

RESUMO

The systematic evolution of ligands by exponential enrichment (SELEX) is a combinatorial oligonucleotide library-based in vitro selection approach in which DNA or RNA molecules are selected by their ability to bind their targets with high affinity and specificity, comparable to those of antibodies. Nucleic acids with high affinity for their targets have been selected against a wide variety of compounds, from small molecules, such as ATP, to membrane proteins and even whole organisms. Recently, the use of the SELEX technique was extended to isolate oligonucleotide ligands, also known as aptamers, for a wide range of proteins of importance for therapy and diagnostics, such as growth factors and cell surface antigens. The number of aptamers generated as inhibitors of various target proteins has increased following automatization of the SELEX process. Their diagnostic and therapeutic efficacy can be enhanced by introducing chemical modifications into the oligonucleotides to provide resistance against enzymatic degradation in body fluids. Several aptamers are currently being tested in preclinical and clinical trials, and aptamers are in the process of becoming a new class of therapeutic agents. Recently, the anti-VEGF aptamer pegaptanib received FDA approval for treatment of human ocular vascular disease.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/uso terapêutico , DNA , Estabilidade de Medicamentos , Humanos , RNA
12.
Biochemistry ; 45(1): 224-33, 2006 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-16388598

RESUMO

P2X receptors play an important role in communication between cells in the nervous system. Therefore, understanding the mechanisms of inhibition of these receptors is important for the development of new tools for drug discovery. Our objective has been to determine the pharmacological activity of the antagonist suramin, the most important antagonist of purinergic receptor function, as well as to demonstrate its noncompetitive inhibition and confirm a competitive mechanism between ATP and TNP-ATP in 1321N1 glial cells stably transfected with the recombinant rat P2X(2) receptor. A radioligand binding assay was employed to determine whether suramin, TNP-ATP, and ATP compete for the same binding site on the receptor. TNP-ATP displaced [alpha-32P]ATP, whereas suramin did not interfere with [alpha-32P]ATP-receptor binding. To determine the inhibition mechanism relevant for channel opening, currents obtained in fast kinetic whole-cell recording experiments, following stimulation of cells by ATP in the presence of suramin, were compared to those obtained by ATP in the presence of TNP-ATP. Supported by a mathematical model for receptor kinetics [Breitinger, H. G., Geetha, N., and Hess, G. P. (2001) Biochemistry 40, 8419-8429], the inhibition factors were plotted as functions of inhibitor or agonist concentrations. Analysis of the data indicated a competitive inhibition mechanism for TNP-ATP and a noncompetitive inhibition for suramin. Taken together, both data support a noncompetitive inhibition mechanism of the rat recombinant P2X(2) receptor by suramin, confirm the competitive inhibition by TNP-ATP, and allow the prediction of a model for P2X(2) receptor inhibition.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Neuroglia/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2 , Suramina/farmacologia , Animais , Ligação Competitiva , Células Cultivadas , Eletrofisiologia , Cinética , Neuroglia/metabolismo , Ratos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X2 , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Transfecção
13.
J Biol Chem ; 280(20): 19576-86, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15767251

RESUMO

Kinins are vasoactive oligopeptides generated upon proteolytic cleavage of low and high molecular weight kininogens by kallikreins. These peptides have a well established signaling role in inflammation and homeostasis. Nevertheless, emerging evidence suggests that bradykinin and other kinins are stored in the central nervous system and may act as neuromediators in the control of nociceptive response. Here we show that the kinin-B2 receptor (B2BKR) is differentially expressed during in vitro neuronal differentiation of P19 cells. Following induction by retinoic acid, cells form embryonic bodies and then undergo neuronal differentiation, which is complete after 8 and 9 days. Immunochemical staining revealed that B2BKR protein expression was below detection limits in nondifferentiated P19 cells but increased during the course of neuronal differentiation and peaked on days 8 and 9. Measurement of [Ca(2+)](i) in the absence and presence of bradykinin showed that most undifferentiated cells are unresponsive to bradykinin application, but following differentiation, P19 cells express high molecular weight neurofilaments, secrete bradykinin into the culture medium, and respond to bradykinin application with a transient increase in [Ca(2+)](i). However, inhibition of B2BKR activity with HOE-140 during early differentiation led to a decrease in the size of embryonic bodies formed. Pretreatment of differentiating P19 cells with HOE-140 on day 5 resulted in a reduction of the calcium response induced by the cholinergic agonist carbamoylcholine and decreased expression levels of M1-M3 muscarinic acetylcholine receptors, indicating crucial functions of the B2BKR during neuronal differentiation.


Assuntos
Bradicinina/análogos & derivados , Neurônios/citologia , Neurônios/metabolismo , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo , Animais , Sequência de Bases , Bradicinina/biossíntese , Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina , Sinalização do Cálcio/efeitos dos fármacos , Carbacol/farmacologia , Diferenciação Celular , Linhagem Celular Tumoral , DNA Complementar/genética , Regulação para Baixo/efeitos dos fármacos , Expressão Gênica , Cininogênios/metabolismo , Camundongos , Modelos Neurológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Muscarínicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...