Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 43, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803552

RESUMO

BACKGROUND: Staphylococcus aureus is one of the prevalent etiological agents of contagious bovine mastitis, causing a significant economic burden on the global dairy industry. Given the emergence of antibiotic resistance (ABR) and possible zoonotic spillovers, S aureus from mastitic cattle pose threat to both veterinary and public health. Therefore, assessment of their ABR status and pathogenic translation in human infection models is crucial. RESULTS: In this study, 43 S. aureus isolates associated with bovine mastitis obtained from four different Canadian provinces (Alberta, Ontario, Quebec, and Atlantic provinces) were tested for ABR and virulence through phenotypic and genotypic profiling. All 43 isolates exhibited crucial virulence characteristics such as hemolysis, and biofilm formation, and six isolates from ST151, ST352, and ST8 categories showed ABR. Genes associated with ABR (tetK, tetM, aac6', norA, norB, lmrS, blaR, blaZ, etc.), toxin production (hla, hlab, lukD, etc.), adherence (fmbA, fnbB, clfA, clfB, icaABCD, etc.), and host immune invasion (spa, sbi, cap, adsA, etc.) were identified by analyzing whole-genome sequences. Although none of the isolates possessed human adaptation genes, both groups of ABR and antibiotic-susceptible isolates demonstrated intracellular invasion, colonization, infection, and death of human intestinal epithelial cells (Caco-2), and Caenorhabditis elegans. Notably, the susceptibilities of S. aureus towards antibiotics such as streptomycin, kanamycin, and ampicillin were altered when the bacteria were internalized in Caco-2 cells and C. elegans. Meanwhile, tetracycline, chloramphenicol, and ceftiofur were comparatively more effective with ≤ 2.5 log10 reductions of intracellular S. aureus. CONCLUSIONS: This study demonstrated the potential of S. aureus isolated from mastitis cows to possess virulence characteristics enabling invasion of intestinal cells thus calling for developing therapeutics capable of targeting drug-resistant intracellular pathogens for effective disease management.


Assuntos
Mastite Bovina , Infecções Estafilocócicas , Animais , Bovinos , Feminino , Antibacterianos/farmacologia , Células CACO-2 , Caenorhabditis elegans , Canadá , Resistência Microbiana a Medicamentos , Genômica , Mastite Bovina/microbiologia , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
2.
Environ Sci Pollut Res Int ; 30(60): 124934-124949, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36719577

RESUMO

The rapid growth in the population, industrial developments, and climate change over the century have contributed to a significant rise in aquatic pollution leading to a scarcity of clean, reliable, and sustainable water sources and supply. Exposure through ingestion, inhalation, and dermal absorption of organic/inorganic compounds such as heavy metals, pharmaceuticals, dyes, and persistent organic pollutants (POPs) discharged from municipalities, hospitals, textile industries, food, and agricultural sectors has caused adverse health outcomes in aquatic and terrestrial organisms. Owing to the high surface area, photocatalytic activity, antimicrobial, antifouling, optical, electronic, and magnetic properties, the application of nanotechnology offers unique opportunities in advanced wastewater management strategies over traditional approaches. Carbon nanomaterials and associated composites such as single-walled carbon nanotubes (SWCNT), multiwalled carbon nanotubes (MWCNT), and carbon nanotubes (CNT) buckypaper membranes have demonstrated efficiency in adsorption, photocatalytic activity, and filtration of contaminants and thus show immense potentiality in wastewater management. This review focuses on the application of CNTs in the sequestration of organic and inorganic contaminants from the aquatic environment. It also sheds light on the aquatic pollutant desorption processes, current safety regulations, and toxic responses associated with CNTs. Critical knowledge gaps involving CNT synthesis, surface modification processes, CNT-environment interactions, and risk assessments are further identified and discussed.


Assuntos
Poluentes Ambientais , Metais Pesados , Nanotubos de Carbono , Poluentes Químicos da Água , Águas Residuárias , Nanotubos de Carbono/toxicidade , Compostos Orgânicos , Poluentes Químicos da Água/análise , Adsorção
3.
Nanomaterials (Basel) ; 12(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808015

RESUMO

The emergence of multidrug-resistant (MDR) bacterial pathogens in farm animals and their zoonotic spread is a concern to both animal agriculture and public health. Apart from antimicrobial resistance (AMR), bacterial pathogens from the genera of Salmonella and Staphylococcus take refuge inside host cells, thereby demanding intervention strategies that can eliminate intracellular MDR pathogens. In this study, seven clinical isolates of Salmonella and Staphylococcus from swine farms were characterized for antibiotic (n = 24) resistance, resistance mechanisms, and virulence characteristics. All isolates showed resistance to one or more antibiotics and S. enterica ser. Typhimurium isolate had the highest resistance to the panel of antibiotics tested. Major resistance mechanisms identified were efflux pump and beta-lactamase enzyme activities. Staphylococcus isolates showed complete hemolysis and strong biofilm formation, while Salmonella isolates caused partial hemolysis, but showed no or weak biofilm formation. MDR isolates of S. aureus M12 and S. enterica ser. Typhimurium bacteria were subsequently tested against combinations of antibiotics and potentiating adjuvants for improved antibacterial efficacy using a checkerboard assay, and their fractional inhibitory concentration index (FICI) was calculated. A combination of chitosan and silica nanoparticles containing tetracycline (TET) and efflux pump inhibitor chlorpromazine (CPZ), respectively, was characterized for physicochemical properties and effectiveness against MDR Salmonella enterica ser. Typhimurium isolate. This combination of nano-encapsulated drugs improved the antibacterial efficacy by inhibiting AMR mechanisms (efflux activity, beta-lactamase enzyme activity, and hydrogen sulfide (H2S) production) and reducing intracellular pathogen load by 83.02 ± 14.35%. In conclusion, this study sheds light on the promising applicability of nanoparticle-enabled combination therapy to combat multidrug-resistant pathogens encountered in animal agriculture.

4.
J Photochem Photobiol B ; 231: 112450, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35500384

RESUMO

Plasmonic nanomaterials of gold and silver have been reported to have antibacterial effect. In this study, three gold nanomaterials (NMs) of different aspect rations (Gold nanospheres (AuNSs, aspect ratio 1), and two gold nanorods (AuNRs636, aspect ratio 2.79; AuNRs772, aspect ratio 3.42)) and silver nanoparticles (AgNPs) were synthesized, characterized and the effect of incandescent light on their antibacterial properties were examined. Bacterial inactivation during photoinactivation of nanomaterials and antibacterial mechanisms (biotic ROS, membrane potential, membrane damage) were investigated using Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Salmonella enterica serovar Typhimurium, and methicillin-resistant S. aureus. The results indicated that AuNSs had no antibacterial activity in the tested concentration (0.49-250 µg/mL), while AuNR636 and AuNRs772 showed significant bactericidal effect on all tested bacteria. Notably, AuNRs636 presented higher antibacterial effect than AuNRs772, which could result from higher surface reactivity of AuNRs636 owing to higher dangling bonds. Further studies showed that AuNRs but not AuNSs generated hydroxyl radicals (·OH) (photodynamic effect) and photothermal effect when exposed to incandescent light. The combined photodynamic and photothermal effect resulted in bacterial inactivation through cell membrane damage, lowering of cell membrane potential and DNA degradation. In summary, this investigation showed that Au NRs but not Au NSs exhibit photodynamic and photothermal effects suggesting the potential of fabricating material surfaces with Au NRs for photoactivated bacterial inactivation.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanosferas , Nanotubos , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Escherichia coli , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanotubos/química , Prata/química
6.
BMC Microbiol ; 21(1): 222, 2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332549

RESUMO

BACKGROUND: Bovine mastitis is the most common infectious disease in dairy cattle with major economic implications for the dairy industry worldwide. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from dairy farms is vital not only for animal husbandry but also for public health. METHODS: In this study, the prevalence of AMR in 113 Escherichia coli isolates from cases of bovine clinical mastitis in Canada was investigated. Kirby-Bauer disk diffusion test with 18 antibiotics and microdilution method with 3 heavy metals (copper, zinc, and silver) was performed to determine the antibiotic and heavy-metal susceptibility. Resistant strains were assessed for efflux and ß-lactamase activities besides assessing biofilm formation and hemolysis. Whole-genome sequences for each of the isolates were examined to detect the presence of genes corresponding to the observed AMR and virulence factors. RESULTS: Phenotypic analysis revealed that 32 isolates were resistant to one or more antibiotics and 107 showed resistance against at least one heavy metal. Quinolones and silver were the most efficient against the tested isolates. Among the AMR isolates, AcrAB-TolC efflux activity and ß-lactamase enzyme activities were detected in 13 and 14 isolates, respectively. All isolates produced biofilm but with different capacities, and 33 isolates showed α-hemolysin activity. A positive correlation (Pearson r = + 0.89) between efflux pump activity and quantity of biofilm was observed. Genes associated with aggregation, adhesion, cyclic di-GMP, quorum sensing were detected in the AMR isolates corroborating phenotype observations. CONCLUSIONS: This investigation showed the prevalence of AMR in E. coli isolates from bovine clinical mastitis. The results also suggest the inadequacy of antimicrobials with a single mode of action to curtail AMR bacteria with multiple mechanisms of resistance and virulence factors. Therefore, it calls for combinatorial therapy for the effective management of AMR infections in dairy farms and combats its potential transmission to the food supply chain through the milk and dairy products.


Assuntos
Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/veterinária , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Mastite Bovina/epidemiologia , Mastite Bovina/microbiologia , Animais , Canadá/epidemiologia , Bovinos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Feminino , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...