Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
ACS Nano ; 18(20): 13361-13376, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728619

RESUMO

Oxygen therapy cannot rescue local lung hypoxia in patients with severe respiratory failure. Here, an inhalable platform is reported for overcoming the aberrant hypoxia-induced immune changes and alveolar damage using camouflaged poly(lactic-co-glycolic) acid (PLGA) microparticles with macrophage apoptotic body membrane (cMAB). cMABs are preloaded with mitochondria-targeting superoxide dismutase/catalase nanocomplexes (NCs) and modified with pathology-responsive macrophage growth factor colony-stimulating factor (CSF) chains, which form a core-shell platform called C-cMAB/NC with efficient deposition in deeper alveoli and high affinity to alveolar epithelial cells (AECs) after CSF chains are cleaved by matrix metalloproteinase 9. Therefore, NCs can be effectively transported into mitochondria to inhibit inflammasome-mediated AECs damage in mouse models of hypoxic acute lung injury. Additionally, the at-site CSF release is sufficient to rescue circulating monocytes and macrophages and alter their phenotypes, maximizing synergetic effects of NCs on creating a pro-regenerative microenvironment that enables resolution of lung injury and inflammation. This inhalable platform may have applications to numerous inflammatory lung diseases.


Assuntos
Macrófagos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Camundongos , Macrófagos/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Camundongos Endogâmicos C57BL , Hipóxia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar/patologia , Lesão Pulmonar/terapia , Administração por Inalação , Apoptose/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38669183

RESUMO

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Assuntos
Proteínas de Transporte , Polaridade Celular , Proteínas de Membrana , Coluna Vertebral , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/embriologia , Humanos , Camundongos , Polaridade Celular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Coluna Vertebral/anormalidades , Coluna Vertebral/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Escoliose/genética , Escoliose/congênito , Escoliose/metabolismo , Via de Sinalização Wnt/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Feminino
3.
Int J Epidemiol ; 53(1)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38332579

RESUMO

BACKGROUND: Recommendations around the use of 23-valent pneumococcal polysaccharide vaccine (PPSV23) and 13-valent pneumococcal conjugate vaccine (PCV13) seldom focus on potential benefits of vaccine on comorbidities. We aimed to investigate whether sequential vaccination with PCV13 and PPSV23 among older adults would provide protection against cardiovascular diseases (CVD) compared with using a single pneumococcal vaccine. METHODS: We conducted a Hong Kong-wide retrospective cohort study between 2012 and 2020. Adults aged ≥65 years were identified as receiving either a single or sequential dual vaccination and followed up until the earliest CVD occurrence, death or study end. To minimize confounding, we matched each person receiving a single vaccination to a person receiving sequential vaccination according to their propensity scores. We estimated the hazard ratio (HR) of CVD risk using Cox regression and applied structural equation modelling to test whether the effect of sequential dual vaccination on CVD was mediated via the reduction in pneumonia. RESULTS: After matching, 69 390 people remained in each group and the median (interquartile range) follow-up time was 1.89 (1.55) years. Compared with those receiving a single vaccine, those receiving sequential dual vaccination had a lower risk of CVD [HR (95% CI): 0.75 (0.71, 0.80), P < 0.001]. Post-hoc mediation analysis showed strong evidence that the decreased CVD risk was mediated by the reduction in all-cause pneumonia. CONCLUSIONS: Sequential dual pneumococcal vaccination was associated with lower risk of CVD compared with single-dose PCV13 or PPSV23 in older adults. Such additional CVD benefits should be considered when making decisions about pneumococcal vaccination.


Assuntos
Doenças Cardiovasculares , Infecções Pneumocócicas , Pneumonia , Humanos , Idoso , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Estudos de Coortes , Estudos Retrospectivos , Vacinas Conjugadas , Vacinação , Vacinas Pneumocócicas , Infecções Pneumocócicas/epidemiologia , Infecções Pneumocócicas/prevenção & controle
4.
Adv Pharmacol ; 98: 225-247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37524488

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of death and reduces quality of life that contributes to a health problem worldwide. Chronic airway inflammation is a hallmark of COPD, which occurs in response to exposure of inhaled irritants like cigarette smoke. Despite accessible to the most up-to-date medications, none of the treatments is currently available to decrease the disease progression. Therefore, it is believed that drugs which can reduce airway inflammation will provide effective disease modifying therapy for COPD. There are many broad-range anti-inflammatory drugs including those that inhibit cell signaling pathways like inhibitors of p38 mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), and phosphoinositide-3-kinase (PI3K), are now in phase III development for COPD. In this chapter, we review recent basic research data in the laboratory that may indicate novel therapeutic pathways arisen from currently used drugs such as selective monoamine oxidase (MAO)-B inhibitors and drugs targeting peripheral benzodiazepine receptors [also known as translocator protein (TSPO)] to reduce airway inflammation. Considering the impact of chronic airway inflammation on the lives of COPD patients, the potential pharmacological candidates for new anti-inflammatory targets should be further investigated. In addition, it is crucial to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target novel therapies. This review will enhance our knowledge on how cigarette smoke affects MAO-B activity and TSPO activation/inactivation with specific ligands through regulation of mitochondrial function, and will help to identify new potential treatment for COPD in future.


Assuntos
Reposicionamento de Medicamentos , Doença Pulmonar Obstrutiva Crônica , Humanos , Qualidade de Vida , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Receptores de GABA
5.
ACS Nano ; 17(12): 11626-11644, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37285229

RESUMO

Interactions of lung macrophages and recruited neutrophils with the lung microenvironment continuously aggravate the dysregulation of lung inflammation in the pathogenesis of acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Either modulating macrophages or destroying neutrophil counts cannot guarantee a satisfactory outcome in ARDS treatment. Aimed at inhibiting the coordinated action of neutrophils and macrophages and modulating the hyper-inflammatory condition, an inhalable biomimetic sequential drug-releasing nanoplatform was developed for the combinatorial treatment of ALI. The nanoplatform (termed D-SEL) was made by conjugating DNase I, as outer cleavable arms, to a serum exosomal and liposomal hybrid nanocarrier (termed SEL) via a matrix metalloproteinase 9 (MMP-9)-cleavable peptide and then encapsulating methylprednisolone sodium succinate (MPS). In lipopolysaccharide (LPS) induced ALI in mice, the MPS/D-SEL moved through muco-obstructive airways and was retained in the alveoli for over 24 h postinhalation. DNase I was then released from the nanocarrier first after responding to MMP-9, resulting in inner SEL core exposure, which precisely delivered MPS into macrophages for promoting M2 macrophage polarization. Local and sustained DNase I release degraded dysregulated neutrophil extracellular traps (NETs) and suppressed neutrophil activation and the mucus plugging microenvironment, which in turn amplified M2 macrophage polarization efficiency. Such dual-stage drug release behavior facilitated down-regulation of pro-inflammatory cytokines in the lung but anti-inflammatory cytokine production through remodeling lung immune homeostasis, ultimately promoting lung tissue repair. This work presents a versatile hybrid biomimetic nanoplatform for the local pulmonary delivery of dual-drug therapeutics and displays potential in the treatment of acute inflammation.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Camundongos , Metaloproteinase 9 da Matriz/metabolismo , Biomimética , Liberação Controlada de Fármacos , Pulmão/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/patologia , Homeostase , Desoxirribonuclease I , Lipopolissacarídeos
6.
Biomed Pharmacother ; 164: 114935, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37245337

RESUMO

Asthma is a chronic inflammatory disease characterized by airway hypersensitivity and remodeling. The current treatments provide only short-term benefits and may have undesirable side effects; thus, alternative or supplementary therapy is needed. Because intracellular calcium (Ca2+) signaling plays an essential role in regulating the contractility and remodeling of airway smooth muscle cells, the targeting of Ca2+ signaling is a potential therapeutic strategy for asthma. Houttuynia cordata is a traditional Chinese herb that is used to treat asthma due to its anti-allergic and anti-inflammatory properties. We hypothesized that H. cordata might modulate intracellular Ca2+ signaling and could help relieve asthmatic airway remodeling. We found that the mRNA and protein levels of inositol trisphosphate receptors (IP3Rs) were elevated in interleukin-stimulated primary human bronchial smooth muscle cells and a house dust mite-sensitized model of asthma. The upregulation of IP3R expression enhanced intracellular Ca2+ release upon stimulation and contributed to airway remodeling in asthma. Intriguingly, pretreatment with H. cordata essential oil rectified the disruption of Ca2+ signaling, mitigated asthma development, and prevented airway narrowing. Furthermore, our analysis suggested that houttuynin/2-undecanone could be the bioactive component in H. cordata essential oil because we found similar IP3R suppression in response to the commercially available derivative sodium houttuyfonate. An in silico analysis showed that houttuynin, which downregulates IP3R expression, binds to the IP3 binding domain of IP3R and may mediate a direct inhibitory effect. In summary, our findings suggest that H. cordata is a potential alternative treatment choice that may reduce asthma severity by targeting the dysregulation of Ca2+ signaling.


Assuntos
Antiasmáticos , Asma , Houttuynia , Humanos , Sinalização do Cálcio , Houttuynia/metabolismo , Antiasmáticos/farmacologia , Antiasmáticos/uso terapêutico , Brônquios/metabolismo , Asma/tratamento farmacológico , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Cálcio/metabolismo
7.
Virol J ; 20(1): 65, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041586

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide pandemic with over 627 million cases and over 6.5 million deaths. It was reported that smoking-related chronic obstructive pulmonary disease (COPD) might be a crucial risk for COVID-19 patients to develop severe condition. As cigarette smoke (CS) is the major risk factor for COPD, we hypothesize that barrier dysfunction and an altered cytokine response in CS-exposed airway epithelial cells may contribute to increased SARS-CoV-2-induced immune response that may result in increased susceptibility to severe disease. The aim of this study was to evaluate the role of CS on SARS-CoV-2-induced immune and inflammatory responses, and epithelial barrier integrity leading to airway epithelial damage. METHODS: Primary human airway epithelial cells were differentiated under air-liquid interface culture. Cells were then exposed to cigarette smoke medium (CSM) before infection with SARS-CoV-2 isolated from a local patient. The infection susceptibility, morphology, and the expression of genes related to host immune response, airway inflammation and damages were evaluated. RESULTS: Cells pre-treated with CSM significantly caused higher replication of SARS-CoV-2 and more severe SARS-CoV-2-induced cellular morphological alteration. CSM exposure caused significant upregulation of long form angiotensin converting enzyme (ACE)2, a functional receptor for SARS-CoV-2 viral entry, transmembrane serine protease (TMPRSS)2 and TMPRSS4, which cleave the spike protein of SARS-CoV-2 to allow viral entry, leading to an aggravated immune response via inhibition of type I interferon pathway. In addition, CSM worsened SARS-CoV-2-induced airway epithelial cell damage, resulting in severe motile ciliary disorder, junctional disruption and mucus hypersecretion. CONCLUSION: Smoking led to dysregulation of host immune response and cell damage as seen in SARS-CoV-2-infected primary human airway epithelia. These findings may contribute to increased disease susceptibility with severe condition and provide a better understanding of the pathogenesis of SARS-CoV-2 infection in smokers.


Assuntos
COVID-19 , Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Humanos , SARS-CoV-2 , Sistema Respiratório
8.
ACS Appl Mater Interfaces ; 15(1): 479-493, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36583377

RESUMO

Since most current studies have focused on exploring how phagocyte internalization of drug-loaded nanovesicles by macrophages would affect the function and therapeutic effects of infiltrated neutrophils or monocytes, research has evaluated the specificity of the inhaled nanovesicles for targeting various phagocytes subpopulations. In this study, liposomes with various charges (including neutral (L1), anionic (L2), and cationic at inflammatory sites (L3)) were constructed to investigate how particle charge determined their interactions with key phagocytes (including macrophages and neutrophils) in acute lung injury (ALI) models and to establish correlations with their biofate and overall anti-inflammatory effect. Our results clearly indicated that neutrophils were capable of rapidly sequestering L3 with a 3.2-fold increase in the cellular liposome distribution, compared to that in AMs, while 70.5% of L2 were preferentially uptaken by alveolar macrophages (AMs). Furthermore, both AMs and the infiltrated neutrophils performed as the potential vesicles for the inhaled liposomes to prolong their lung retention in ALI models, whereas AMs function as sweepers to recognize and process liposomes in the healthy lung. Finally, inhaled roflumilast-loaded macrophage or neutrophil preferential liposomes (L2 or L3) exhibited optimal anti-inflammatory effect because of the decreased AMs phagocytic capacity or the prolonged circulation times of neutrophils. Such findings will be beneficial in exploiting a potential pathway to specifically manipulate lung phagocyte functions in lung inflammatory diseases where these cells play crucial roles.


Assuntos
Lesão Pulmonar Aguda , Pneumopatias , Pneumonia , Humanos , Neutrófilos , Lipossomos/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Pneumonia/tratamento farmacológico , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo
9.
Biomed J ; 46(5): 100566, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36244649

RESUMO

BACKGROUND: Both obstructive sleep apnea (OSA) and non-alcoholic fatty liver disease (NAFLD) are prevalent within obese individuals. We aimed to investigate the effects of intermittent hypoxia (IH), a clinical feature of OSA, on hepatic expression of fatty acid translocase (CD36) in relation to liver injury in lean and diet-induced obese mice. METHODS: Four-week-old male C57BL/6J mice were randomized to standard diet (SD) or high fat (HF) diet groups. At 13-week-old, all mice were exposed to either air or IH (IH30; thirty hypoxic episodes per hour) for four weeks. We assessed liver injury through lipid profile, oxidative and inflammatory stress, histological scoring and hepatic CD36 expression. RESULTS: In lean mice, IH elevated serum and hepatic triglyceride and free fatty acid (FFA) levels, in line with upregulation of hepatic CD36 expression and myeloperoxidase (MPO)-positive cells in support of inflammatory infiltrates along with increase in serum malondialdehyde (MDA), C-X-C motif chemokine ligand 1(CXCL-1) and monocyte chemoattractant protein-1 (MCP-1). In diet-induced obese mice, an increase in hepatic alanine transaminase (ALT) activity, serum and hepatic levels of lipid parameters and inflammatory markers, serum MDA level, hepatic expressions of CD36 and α-smooth muscle actin (α-SMA), and MPO-positive cells was observed. IH potentiated hepatic ALT activity, serum CXCL-1 and hepatic interleukin-6 (IL-6), in line with inflammatory infiltrates, but paradoxically, reduced hepatic FFA level and hepatic CD36 expression, compared to obese mice without IH exposure. However, IH further augmented diet-induced liver steatosis and fibrosis as shown by histological scores. CONCLUSION: This study contributes to support that IH featuring OSA may lead to liver injury via differential regulation of hepatic CD36 expression in lean and diet-induced obese mice.


Assuntos
Fígado , Apneia Obstrutiva do Sono , Masculino , Camundongos , Animais , Camundongos Obesos , Camundongos Endogâmicos C57BL , Fígado/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Dieta Hiperlipídica/efeitos adversos , Triglicerídeos/metabolismo , Ácidos Graxos/metabolismo
10.
NPJ Parkinsons Dis ; 8(1): 115, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088364

RESUMO

Parkinson's disease (PD) is characterized by dopaminergic neurodegeneration in nigrostriatal and cortical brain regions associated with pathogenic α-synuclein (αSyn) aggregate/oligomer accumulation. LRRK2 hyperactivity is a disease-modifying therapeutic target in PD. However, LRRK2 inhibition may be associated with peripheral effects, albeit with unclear clinical consequences. Here, we significantly reduced αSyn oligomer accumulation in mouse striatum through long-term LRRK2 inhibition using GNE-7915 (specific brain-penetrant LRRK2 inhibitor) without causing adverse peripheral effects. GNE-7915 concentrations in wild-type (WT) mouse sera and brain samples reached a peak at 1 h, which gradually decreased over 24 h following a single subcutaneous (100 mg/kg) injection. The same dose in young WT and LRRK2R1441G mutant mice significantly inhibited LRRK2 kinase activity (Thr73-Rab10 and Ser106-Rab12 phosphorylation) in the lung, which dissipated by 72 h post-injection. 14-month-old mutant mice injected with GNE-7915 twice weekly for 18 weeks (equivalent to ~13 human years) exhibited reduced striatal αSyn oligomer and cortical pSer129-αSyn levels, correlating with inhibition of LRRK2 hyperactivity in brain and lung to WT levels. No GNE-7915-treated mice showed increased mortality or morbidity. Unlike reports of abnormalities in lung and kidney at acute high doses of LRRK2 inhibitors, our GNE-7915-treated mice did not exhibit swollen lamellar bodies in type II pneumocytes or abnormal vacuolation in the kidney. Functional and histopathological assessments of lung, kidney and liver, including whole-body plethysmography, urinary albumin-creatinine ratio (ACR), serum alanine aminotransferase (ALT) and serum interleukin-6 (inflammatory marker) did not reveal abnormalities after long-term GNE-7915 treatment. Long-term inhibition of mutant LRRK2 hyper-kinase activity to physiological levels presents an efficacious and safe disease-modifying therapy to ameliorate synucleinopathy in PD.

11.
Am J Respir Cell Mol Biol ; 67(4): 471-481, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35763375

RESUMO

Mitochondrial dysfunction has been reported in chronic obstructive pulmonary disease (COPD). Transfer of mitochondria from mesenchymal stem cells to airway smooth muscle cells (ASMCs) can attenuate oxidative stress-induced mitochondrial damage. It is not known whether mitochondrial transfer can occur between structural cells in the lungs or what role this may have in modulating bioenergetics and cellular function in healthy and COPD airways. Here, we show that ASMCs from both healthy ex-smokers and subjects with COPD can exchange mitochondria, a process that happens, at least partly, via extracellular vesicles. Exposure to cigarette smoke induces mitochondrial dysfunction and leads to an increase in the donation of mitochondria by ASMCs, suggesting that the latter may be a stress response mechanism. Healthy ex-smoker ASMCs that receive mitochondria show increases in mitochondrial biogenesis and respiration and a reduction in cell proliferation, irrespective of whether the mitochondria are transferred from healthy ex-smoker or COPD ASMCs. Our data indicate that mitochondrial transfer between structural cells is a homeostatic mechanism for the regulation of bioenergetics and cellular function within the airways and may represent an endogenous mechanism for reversing the functional consequences of mitochondrial dysfunction in diseases such as COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Metabolismo Energético , Humanos , Pulmão/metabolismo , Mitocôndrias/metabolismo , Músculo Liso , Doença Pulmonar Obstrutiva Crônica/metabolismo
12.
Sleep Med ; 95: 16-28, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537279

RESUMO

With the current epidemic of obesity worldwide, the prevalence of various obesity-related diseases is constantly increasing. Obesity remains the strongest phenotypic risk factor in both obstructive sleep apnea (OSA) and non-alcoholic fatty liver disease (NAFLD). In OSA, intermittent hypoxia-reoxygenation and sleep fragmentation, as a result of recurrent episodes of upper airway obstruction during sleep, may give rise to a plethora of metabolic derangements downstream. Intermittent hypoxia (IH) is postulated to be an important mechanistic trigger for potential systemic impact on organs or tissues in OSA, and has served as a useful experimental model for seeking evidence for downstream effects of OSA. This narrative review focuses on the clinical association between OSA and NAFLD, and the role of IH in the progression of NAFLD in lean and diet-induced obese animal models. Understanding the roles of obesity and IH on NAFLD would advance our limited knowledge on the potential health consequences of OSA, a disease which is afflicting more and more people globally, and also in devising effective therapeutic strategies for this progressively common liver condition.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Apneia Obstrutiva do Sono , Animais , Humanos , Hipóxia/complicações , Hepatopatia Gordurosa não Alcoólica/complicações , Obesidade/complicações , Fatores de Risco
13.
J Allergy Clin Immunol ; 149(4): 1445-1457.e5, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34624393

RESUMO

BACKGROUND: Orosomucoid 1-like protein 3 (ORMDL3), a transmembrane protein localized in the endoplasmic reticulum (ER), has been genetically associated with chronic obstructive pulmonary disease (COPD), in addition to childhood-onset asthma. However, the functional role of ORMDL3 in the pathogenesis of COPD is still unknown. OBJECTIVE: Because cigarette smoke is the major risk factor for COPD, we aimed to investigate the role of ORMDL3 in cigarette smoke-induced human airway smooth muscle cell (HASMC) injury. METHODS: The mRNA and protein expression of ORMDL3 was examined in HASMCs from nonsmokers and smokers without or with COPD. Knockdown of ORMDL3 in primary healthy HASMCs was performed using small interfering RNA before exposure to cigarette smoke medium (CSM) for 24 hours. Inflammatory, proliferative/apoptotic, ER stress, and mitochondrial markers were evaluated. RESULTS: Elevation of ORMDL3 mRNA and protein expression was observed in HASMCs of smokers without or with COPD. CSM caused significant upregulation of ORMDL3 expression in healthy nonsmokers. ORMDL3 knockdown regulated CSM-induced inflammation, cell proliferation, and apoptosis. Silencing ORMDL3 led to reduction of CSM-induced ER stress via inhibition of unfolded protein response pathways such as activating transcription factor 6 and protein kinase RNA-like ER kinase. ORMDL3 was also involved in CSM-induced mitochondrial dysfunction via the mitochondrial fission process. CONCLUSIONS: We report the induction of ORMDL3 in HASMCs after cigarette smoke exposure. ORMDL3 may mediate cigarette smoke-induced activation of unfolded protein response pathways during airway smooth muscle cell injury.


Assuntos
Asma , Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Asma/metabolismo , Criança , Fumar Cigarros/efeitos adversos , Estresse do Retículo Endoplasmático , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Miócitos de Músculo Liso/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , RNA Mensageiro/metabolismo , Nicotiana
14.
Environ Pollut ; 295: 118720, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34953947

RESUMO

Particulate matter with aerodynamic diameter not larger than 2.5 µm (PM2.5) escalated the risk of respiratory diseases. Mitochondrial dysfunction may play a pivotal role in PM2.5-induced airway injury. However, the potential effect of PM2.5 on mitochondrial permeability transition pore (mPTP)-related airway injury is still unknown. This study aimed to investigate the role of mPTP in PM2.5-induced mitochondrial dysfunction in airway epithelial cells in vitro. PM2.5 significantly reduced cell viability and caused apoptosis in BEAS-2B cells. We also found PM2.5 caused cellular and mitochondrial morphological alterations, evidenced by the disappearance of mitochondrial cristae, mitochondrial swelling, and the rupture of the outer mitochondrial membrane. PM2.5 induced mPTP opening via upregulation of voltage-dependent anion-selective channel (VDAC), leading to deprivation of mitochondrial membrane potential, increased mitochondrial reactive oxygen species (ROS) generation and intracellular calcium level. PM2.5 suppressed mitochondrial respiratory function by reducing basal and maximal respiration, and ATP production. The mPTP targeting compounds cyclosporin A [CsA; a potent inhibitor of cyclophilin D (CypD)] and VBIT-12 (a selective VDAC1 inhibitor) significantly inhibited PM2.5-induced mPTP opening and apoptosis, and preserved mitochondrial function by restoring mitochondrial membrane potential, reducing mitochondrial ROS generation and intracellular calcium content, and maintaining mitochondrial respiration function. Our data further demonstrated that PM2.5 caused reduction in nuclear expressions of PPARγ and PGC-1α, which were reversed in the presence of CsA. These findings suggest that mPTP might be a potential therapeutic target in the treatment of PM2.5-induced airway injury.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Células Epiteliais/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Material Particulado/metabolismo , Material Particulado/toxicidade
15.
Biomed Pharmacother ; 143: 112101, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34474340

RESUMO

Chronic obstructive pulmonary disease (COPD) is among the leading causes of death worldwide, and is characterized by persistent respiratory symptoms and airflow limitation due to chronic airway inflammation. Cigarette smoking is a major risk factor for COPD. This study aims to determine the therapeutic effects of polysaccharides extracted from Dendrobium officinale (DOPs), a valuable traditional Chinese Medicinal herb, on cigarette smoke (CS)-induced airway inflammation in a rat passive smoking model. Male Sprague-Dawley rats were exposed to CS or sham air (SA) as control for a 56-day period. On Day 29, rats were subdivided and given water, DOPs or N-acetylcysteine (NAC) via oral gavage on a daily basis for the remaining duration. DOPs reduced CS-induced oxidative stress as evidenced by reducing malondialdehyde (MDA) levels in the lung. DOPs also exerted potent anti-inflammatory properties as evidenced by a reduction in the number of lymphocytes and monocytes in serum, significantly attenuating infiltration of inflammatory cells in lung tissue, as well as pro-inflammatory mediators in serum, bronchoalveolar lavage (BAL) and lung. Additionally, DOPs inhibited the CS-induced activation of ERK, p38 MAPK and NF-κB signaling pathways. These findings suggest that DOPs may have potentially beneficial effects in limiting smoking-related lung oxidative stress, and inflammation mediated via the inhibition of MAPK and NF-κB signaling pathways in smokers, without or with COPD.


Assuntos
Antioxidantes/farmacologia , Dendrobium , Pulmão/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pneumonia/prevenção & controle , Polissacarídeos/farmacologia , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Animais , Antioxidantes/isolamento & purificação , Dendrobium/química , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Extratos Vegetais/isolamento & purificação , Pneumonia/etiologia , Pneumonia/imunologia , Pneumonia/metabolismo , Polissacarídeos/isolamento & purificação , Ratos Sprague-Dawley , Transdução de Sinais
16.
Methods Mol Biol ; 2269: 93-105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33687674

RESUMO

Mesenchymal stem cells (MSCs) have emerged as an attractive candidate for cell-based therapy. In the past decade, many animal and pilot clinical studies have demonstrated that MSCs are therapeutically beneficial for the treatment of obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). However, due to the scarcity of adult human MSCs, human-induced pluripotent stem cells mesenchymal stem cells (iPSCs) are now increasingly used as a source of MSCs. iPSCs are derived by reprogramming somatic cells from a wide variety of tissues such as skin biopsies and then differentiating them into iPSC-MSCs. One of the mechanisms through which MSCs exert their protective effects is mitochondrial transfer. Specifically, transfer of mitochondria from iPSC-MSCs to lung cells was shown to protect lung cells against oxidative stress-induced mitochondrial dysfunction and apoptosis and to reduce lung injury and inflammation in in vivo models of lung disease. In this chapter, we detail our methods to visualize and quantify iPSC-MSC-mediated mitochondrial transfer and to study its effects on oxidant-induced airway epithelial and smooth muscle cell models of acute airway cell injury.


Assuntos
Células Epiteliais Alveolares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo , Células Epiteliais Alveolares/patologia , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Mesenquimais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/transplante , Miócitos de Músculo Liso/patologia
17.
Life Sci ; 265: 118862, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33301812

RESUMO

AIMS: The 18 kDa translocator protein (TSPO) - also known as peripheral benzodiazepine receptor, is found to be expressed in lung epithelium and pneumocytes, which is closely associated with the mitochondrial permeability transition pore (mPTP) and apoptosis. Cigarette smoking, a key risk factor for the development of chronic obstructive pulmonary disease (COPD), is known to induce apoptosis. We aimed to investigate TSPO subcellular localization and to examine whether cigarette smoke medium (CSM) induce apoptosis via TSPO in airway epithelial cells. MAIN METHODS: TSPO subcellular localization and expression were evaluated using immunofluorescent staining and Western blot analysis respectively. TSPO ligands either PK 11195 (a specific antagonist) or AC-5216 (a specific agonist) were pre-incubated in human bronchial epithelial cells before treating with 2% CSM for measurements of apoptotic cells, mitochondrial membrane potential (ΔΨm), cytoplasmic/mitochondrial reactive oxygen species (ROS) and inflammatory marker interleukin (IL)-8 respectively. KEY FINDINGS: TSPO was localized around the nucleus and overlapped with mitochondria in BEAS-2B cells. CSM caused an increase in apoptotic cells along with elevation of TSPO protein expression. Pretreatment of PK 11195 suppressed while AC-5216 potentiated CSM-induced apoptosis, collapse of ΔΨm, elevation of cytoplasmic/mitochondrial ROS levels and IL-8 release. In support, knockdown of TSPO caused a significant suppression of CSM-induced IL-8 release in BEAS-2B cells. SIGNIFICANCE: The findings suggest that TSPO may play a crucial role in the regulation of cigarette smoke-induced mitochondrial dysfunction via mPTP. Therefore, the development of specific TSPO antagonists like PK11195 may be beneficial to combat smoking-related diseases, such as COPD.


Assuntos
Apoptose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Receptores de GABA/metabolismo , Fumaça/efeitos adversos , Brônquios/citologia , Linhagem Celular , Células Epiteliais/patologia , Humanos , Isoquinolinas/farmacologia , Mitocôndrias/patologia , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Purinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Nicotiana
18.
Curr Pharm Des ; 27(12): 1469-1481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33243107

RESUMO

Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases which are characterized by chronic inflammation and an increase in mucus production, and are highly prevalent conditions. Despite recent advances and multiple available therapies, there remains a significant unmet medical need. Over the past 40 years, the introduction of new classes of safe and effective therapy is insufficient. In spite of the high burden of asthma and COPD among patients, there are fewer new approved therapies in comparison to cardiovascular, metabolic and neurological diseases due to few drug candidates and a higher failure rate in the development of respiratory medicine. Lung diseases are amongst the leading causes of death globally with asthma being one of the most prevalent respiratory diseases, which affects people of all ages but, despite effective therapies available, many patients are poorly controlled and have a low quality of life. COPD is currently ranked as the fourth cause of death worldwide and predicted to become the third leading cause of death in 2030. The development of more effective treatments is urgently needed in order to reduce the high mortality rate and the enormous suffering from asthma and COPD. Various inhalation devices with different classes of medications are the foundation as therapies in both asthma and COPD. This article gives a comprehensive review of the promising inhaled therapies in the treatment of asthma and COPD. However, the lack of disease control in asthma and COPD patients may be due to numerous reasons. The association between non-adherence to guidelines on the part of the health care provider and poor inhalation technique and/or non-adherence to the prescribed treatment plan by the patients is common. It is therefore essential to discuss the different delivery systems and the methods used in asthma and COPD patients.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Administração por Inalação , Corticosteroides/uso terapêutico , Asma/tratamento farmacológico , Broncodilatadores/uso terapêutico , Humanos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Qualidade de Vida
19.
Ann Transl Med ; 8(21): 1418, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33313163

RESUMO

BACKGROUND: Cigarette smoke (CS)-induced build-up of oxidative stress is the leading cause of chronic obstructive pulmonary disease (COPD). Monoamine oxidases (MAOs) are novel sources of reactive oxygen species (ROS) due to the production of hydrogen peroxide (H2O2). However, it remains unclear whether MAO signaling is involved in CS-induced oxidative stress in vivo. This study aimed at investigating the impact of selegiline, a selective MAO-B inhibitor, on CS-induced lung oxidative stress and inflammation in vivo and its underlying mechanism. METHODS: Sprague Dawley rats were randomly divided into four groups: saline plus sham air (Saline/air), saline plus cigarette smoke (Saline/CS), selegiline plus sham air (Slg/air) and selegiline plus cigarette smoke (Slg/CS). Rats from Saline/air and Saline/CS groups were intraperitoneally injected with saline (2 mL/kg body weight) while rats from Slg/air and Slg/CS groups were injected with selegiline (2 mg/kg body weight) about 30 min prior to exposure daily. The Saline/air and Slg/air groups were exposed to atmospheric air while the Saline/CS and Slg/CS groups were exposed to mainstream CS generated from the whole body inExpose smoking system (SCIREQ, Canada) for twice daily (each for 1 hour with 20 cigarettes). After 7 days, rats were sacrificed to collect bronchoalveolar lavage (BAL) and lung tissues for the measurement of oxidative/anti-oxidative and inflammatory/anti-inflammatory makers respectively. RESULTS: CS caused significant elevation of MAO-B activity, reduction of total antioxidant capacity (T-AOC) and rGSH/GSSG ratio, and enhancement of superoxide dismutase (SOD) activity in rat lung. Selegiline significantly only reversed CS-induced elevation of MAO-B activity and reduction of rGSH/GSSG ratio. The CS-induced elevation of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) expression via nuclear factor erythroid 2-related factor 2 (Nrf2) was also reversed by selegiline. Despite of CS-induced increase in total cell counts, especially the number of macrophages, selegiline had no effect. Selegiline attenuated CS-induced elevation of pro-inflammatory mediators (CINC-1, MCP-1 and IL-6) and restored CS-induced reduction of anti-inflammatory mediator IL-10 in BAL, which was driven through MAPK and NF-κB. CONCLUSIONS: Inhibition of MAO-B may provide a promising therapeutic strategy for CS-mediated oxidative stress and inflammation in acute CS-exposed rat lungs.

20.
Oxid Med Cell Longev ; 2020: 8217642, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33144914

RESUMO

Chronic obstructive pulmonary disease (COPD), characterized by oxidative stress and inflammation, is one of the leading causes of death worldwide, in which cigarette smoke (CS) is the major risk factor. Dendrobium officinale polysaccharides (DOPs) are the main active ingredients extracted from Dendrobium officinale, which have been reported to have antioxidant and anti-inflammatory activity as well as inhibition of mucin gene expression. This study is aimed at investigating the effect of DOPs on CS-induced mucus hypersecretion and viscosity in vitro and in vivo. For in vitro study, primary normal human bronchial epithelial cells (HBECs) differentiated at the air-liquid interface (ALI) culture for 28 days were stimulated with cigarette smoke medium (CSM) in the absence or presence of various concentrations of DOPs or N-acetylcysteine (NAC) for 24 hours. For in vivo study, male Sprague-Dawley rats were randomized to sham air (SA) as control group or CS group for 56 days. At day 29, rats were subdivided and given water as control, DOPs, or NAC as positive control as a mucolytic drug via oral gavage for the remaining duration. Samples collected from apical washing, cell lysates, bronchoalveolar lavage (BAL), and lung tissues were evaluated for mucin gene expression, mucus secretion, and viscosity. DOPs ameliorated the CS-induced mucus hypersecretion and viscosity as shown by the downregulation of MUC5AC mRNA, MUC5AC secretary protein, and mucus viscosity via inhibition of mucus secretory granules in both in vitro and in vivo models. DOPs produced its effective effects on the CS-induced mucus hypersecretion and viscosity via the inhibition of the mucus secretory granules. These findings could be a starting point for considering the potential role of DOPs in the management of the smoking-mediated COPD. However, further research is needed.


Assuntos
Fumar Cigarros/efeitos adversos , Dendrobium/química , Muco/metabolismo , Polissacarídeos/farmacologia , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Receptores ErbB/metabolismo , Células Caliciformes/patologia , Humanos , Hiperplasia , Masculino , Ratos Sprague-Dawley , Traqueia/patologia , Traqueia/ultraestrutura , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...