Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 21(9): 958-974, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314749

RESUMO

Prostate cancer progression to the lethal metastatic castration-resistant phenotype (mCRPC) is driven by αv integrins and is associated with Golgi disorganization and activation of the ATF6 branch of unfolded protein response (UPR). Overexpression of integrins requires N-acetylglucosaminyltransferase-V (MGAT5)-mediated glycosylation and subsequent cluster formation with Galectin-3 (Gal-3). However, the mechanism underlying this altered glycosylation is missing. For the first time, using HALO analysis of IHC, we found a strong association of integrin αv and Gal-3 at the plasma membrane (PM) in primary prostate cancer and mCRPC samples. We discovered that MGAT5 activation is caused by Golgi fragmentation and mislocalization of its competitor, N-acetylglucosaminyltransferase-III, MGAT3, from Golgi to the endoplasmic reticulum (ER). This was validated in an ethanol-induced model of ER stress, where alcohol treatment in androgen-refractory PC-3 and DU145 cells or alcohol consumption in patient with prostate cancer samples aggravates Golgi scattering, activates MGAT5, and enhances integrin expression at PM. This explains known link between alcohol consumption and prostate cancer mortality. ATF6 depletion significantly blocks UPR and reduces the number of Golgi fragments in both PC-3 and DU145 cells. Inhibition of autophagy by hydroxychloroquine (HCQ) restores compact Golgi, rescues MGAT3 intra-Golgi localization, blocks glycan modification via MGAT5, and abrogates delivery of Gal-3 to the cell surface. Importantly, the loss of Gal-3 leads to reduced integrins at PM and their accelerated internalization. ATF6 depletion and HCQ treatment synergistically decrease integrin αv and Gal-3 expression and temper orthotopic tumor growth and metastasis. IMPLICATIONS: Combined ablation of ATF6 and autophagy can serve as new mCRPC therapeutic.


Assuntos
N-Acetilglucosaminiltransferases , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Integrinas , Integrina alfaV , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Estresse do Retículo Endoplasmático , Autofagia , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo
2.
J Exp Clin Cancer Res ; 40(1): 289, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521429

RESUMO

BACKGROUND: The development of persistent endoplasmic reticulum (ER) stress is one of the cornerstones of prostate carcinogenesis; however, the mechanism is missing. Also, alcohol is a physiological ER stress inducer, and the link between alcoholism and progression of prostate cancer (PCa) is well documented but not well characterized. According to the canonical model, the mediator of ER stress, ATF6, is cleaved sequentially in the Golgi by S1P and S2P proteases; thereafter, the genes responsible for unfolded protein response (UPR) undergo transactivation. METHODS: Cell lines used were non-malignant prostate epithelial RWPE-1 cells, androgen-responsive LNCaP, and 22RV1 cells, as well as androgen-refractory PC-3 cells. We also utilized PCa tissue sections from patients with different Gleason scores and alcohol consumption backgrounds. Several sophisticated approaches were employed, including Structured illumination superresolution microscopy, Proximity ligation assay, Atomic force microscopy, and Nuclear magnetic resonance spectroscopy. RESULTS: Herein, we identified the trans-Golgi matrix dimeric protein GCC185 as a Golgi retention partner for both S1P and S2P, and in cells lacking GCC185, these enzymes lose intra-Golgi situation. Progression of prostate cancer (PCa) is associated with overproduction of S1P and S2P but monomerization of GCC185 and its downregulation. Utilizing different ER stress models, including ethanol administration, we found that PCa cells employ an elegant mechanism that auto-activates ER stress by fragmentation of Golgi, translocation of S1P and S2P from Golgi to ER, followed by intra-ER cleavage of ATF6, accelerated UPR, and cell proliferation. The segregation of S1P and S2P from Golgi and activation of ATF6 are positively correlated with androgen receptor signaling, different disease stages, and alcohol consumption. Finally, depletion of ATF6 significantly retarded the growth of xenograft prostate tumors and blocks production of pro-metastatic metabolites. CONCLUSIONS: We found that progression of PCa associates with translocation of S1P and S2P proteases to the ER and subsequent ATF6 cleavage. This obviates the need for ATF6 transport to the Golgi and enhances UPR and cell proliferation. Thus, we provide the novel mechanistic model of ATF6 activation and ER stress implication in the progression of PCa, suggesting ATF6 is a novel promising target for prostate cancer therapy.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Complexo de Golgi/metabolismo , Xenoenxertos , Humanos , Masculino , Metaloendopeptidases/metabolismo , Camundongos , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Pró-Proteína Convertases/metabolismo , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/patologia , Ligação Proteica , Transporte Proteico , Serina Endopeptidases/metabolismo
3.
Sci Rep ; 9(1): 6197, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996277

RESUMO

Having observed how botanicals and other natural compounds are used by nature to control pests in the environment, we began investigating natural polymers, DNA and RNA, as promising tools for insect pest management. Over the last decade, unmodified short antisense DNA oligonucleotides have shown a clear potential for use as insecticides. Our research has concentrated mainly on Lymantria dispar larvae using an antisense oligoRING sequence from its inhibitor-of-apoptosis gene. In this article, we propose a novel biotechnology to protect plants from insect pests using DNA insecticide with improved insecticidal activity based on a new antisense oligoRIBO-11 sequence from the 5.8S ribosomal RNA gene. This investigational oligoRIBO-11 insecticide causes higher mortality among both L. dispar larvae grown in the lab and those collected from the forest; in addition, it is more affordable and faster acting, which makes it a prospective candidate for use in the development of a ready-to-use preparation.


Assuntos
Inseticidas/isolamento & purificação , Mariposas/genética , Oligodesoxirribonucleotídeos Antissenso/farmacologia , RNA Ribossômico 5,8S/genética , Animais , Biotecnologia/métodos , Genes de RNAr , Inseticidas/farmacologia , Larva/efeitos dos fármacos
4.
Molecules ; 24(8)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999681

RESUMO

Skin cancer has always been and remains the leader among all tumors in terms of occurrence. One of the main factors responsible for skin cancer, natural and artificial UV radiation, causes the mutations that transform healthy cells into cancer cells. These mutations inactivate apoptosis, an event required to avoid the malignant transformation of healthy cells. Among these deadliest of cancers, melanoma and its 'younger sister', Merkel cell carcinoma, are the most lethal. The heavy toll of skin cancers stems from their rapid progression and the fact that they metastasize easily. Added to this is the difficulty in determining reliable margins when excising tumors and the lack of effective chemotherapy. Possibly the biggest problem posed by skin cancer is reliably detecting the extent to which cancer cells have spread throughout the body. The initial tumor is visible and can be removed, whereas metastases are invisible to the naked eye and much harder to eliminate. In our opinion, antisense oligonucleotides, which can be used in the form of targeted ointments, provide real hope as a treatment that will eliminate cancer cells near the tumor focus both before and after surgery.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma , Mutação , Oligonucleotídeos Antissenso/uso terapêutico , Neoplasias Cutâneas , Raios Ultravioleta/efeitos adversos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos da radiação , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...