Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 12(12): 3086-3099, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38716803

RESUMO

The interaction of foreign implants with their surrounding environment is significantly influenced by the adsorption of proteins on the biomaterial surfaces, playing a role in microbial adhesion. Therefore, understanding protein adsorption on solid surfaces and its effect on microbial adhesion is essential to assess the associated risk of infection. The aim of this study is to evaluate the effect of conditioning by fibronectin (Fn) or bovine serum albumin (BSA) protein layers of silica (SiO2) surfaces on the adhesion and detachment of two pathogenic microorganisms: Pseudomonas aeruginosa PAO1-Tn7-gfp and Candida albicans CIP 48.72. Experiments are conducted under both static and hydrodynamic conditions using a shear stress flow chamber. Through the use of very low wall shear stresses, the study brings the link between the static and dynamic conditions of microbial adhesion. The results reveal that the microbial adhesion critically depends on: (i) the presence of a protein layer conditioning the SiO2 surface, (ii) the type of protein and (iii) the protein conformation and organization in the conditioning layer. In addition, a very distinct adhesion behaviour of P. aeruginosa is observed towards the two tested proteins, Fn and BSA. This effect is reinforced by the amount of proteins adsorbed on the surface and their organization in the layer. The results are discussed in the light of atomic force microscopy analysis of the organization and conformation of proteins in the layers after adsorption on the SiO2 surface, as well as the specificity in bacterial behaviour when interacting with these protein layers. The study also demonstrates the very distinctive behaviours of the prokaryote P. aeruginosa PAO1-Tn7-gfp compared to the eukaryote C. albicans CIP 48.72. This underscores the importance of considering species-specific interactions between the protein conditioning layer and different pathogenic microorganisms, which appear crucial in designing tailored anti-adhesive surfaces.


Assuntos
Aderência Bacteriana , Candida albicans , Fibronectinas , Pseudomonas aeruginosa , Soroalbumina Bovina , Dióxido de Silício , Propriedades de Superfície , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Fibronectinas/química , Fibronectinas/metabolismo , Dióxido de Silício/química , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/fisiologia , Candida albicans/fisiologia , Candida albicans/química , Adsorção , Animais , Bovinos , Materiais Biocompatíveis/química
2.
Front Astron Space Sci ; 82021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33850840

RESUMO

Laboratory experiments are essential in exploring the mechanisms involved in stardust formation. One key question is how a metal is incorporated into dust for an environment rich in elements involved in stardust formation (C, H, O, Si). To address experimentally this question we have used a radiofrequency cold plasma reactor in which cyclic organosilicon dust formation is observed. Metallic (silver) atoms were injected in the plasma during the dust nucleation phase to study their incorporation in the dust. The experiments show formation of silver nanoparticles (~15 nm) under conditions in which organosilicon dust of size 200 nm or less is grown. The presence of AgSiO bonds, revealed by infrared spectroscopy, suggests the presence of junctions between the metallic nanoparticles and the organosilicon dust. Even after annealing we could not conclude on the formation of silver silicates, emphasizing that most of silver is included in the metallic nanoparticles. The molecular analysis performed by laser mass spectrometry exhibits a complex chemistry leading to a variety of molecules including large hydrocarbons and organometallic species. In order to gain insights into the involved chemical molecular pathways, the reactivity of silver atoms/ions with acetylene was studied in a laser vaporization source. Key organometallic species, Ag n C2H m (n=1-3; m=0-2), were identified and their structures and energetic data computed using density functional theory. This allows us to propose that molecular Ag-C seeds promote the formation of Ag clusters but also catalyze hydrocarbon growth. Throughout the article, we show how the developed methodology can be used to characterize the incorporation of metal atoms both in the molecular and dust phases. The presence of silver species in the plasma was motivated by objectives finding their application in other research fields than astrochemistry. Still, the reported methodology is a demonstration laying down the ground for future studies on metals of astrophysical interest such as iron.

3.
Nanotechnology ; 30(16): 165101, 2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-30654336

RESUMO

Description of the relationship between protein structure and function remains a primary focus in molecular biology, biochemistry, protein engineering and bioelectronics. Moreover, the investigation of the protein conformational changes after adhesion and dehydration is of importance to tackle problems related to the interaction of proteins with solid surfaces. In this paper the conformational changes of wild-type Discosoma recombinant red fluorescent proteins (DsRed) adhered on silver nanoparticles (AgNPs)-based nanocomposites are explored via surface-enhanced Raman scattering (SERS). Originality in the present approach is to work on dehydrated DsRed thin protein layers in link with natural conditions during drying. To enable the SERS effect, plasmonic substrates consisting of a single layer of AgNPs encapsulated by an ultra-thin silica cover layer were elaborated by plasma process. The achieved enhancement of the electromagnetic field in the vicinity of the AgNPs is as high as 105. This very strong enhancement factor allowed detecting Raman signals from discontinuous layers of DsRed issued from solution with protein concentration of only 80 nM. Three different conformations of the DsRed proteins after adhesion and dehydration on the plasmonic substrates were identified. It was found that the DsRed chromophore structure of the adsorbed proteins undergoes optically assisted chemical transformations when interacting with the optical beam, which leads to reversible transitions between the three different conformations. The proposed time-evolution scenario endorses the dynamical character of the relationship between protein structure and function. It also confirms that the conformational changes of proteins with strong internal coherence, like DsRed proteins, are reversible.


Assuntos
Antozoários/metabolismo , Proteínas Luminescentes/química , Nanocompostos/química , Prata/química , Animais , Dessecação , Nanopartículas Metálicas/química , Modelos Moleculares , Conformação Proteica , Análise Espectral Raman , Propriedades de Superfície , Proteína Vermelha Fluorescente
4.
Proc Int Astron Union ; 15(Suppl 350): 397-300, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33072172

RESUMO

Using a cold plasma reactor in which we inject an organosilicon molecular precursor, we investigate chemical mechanisms that can be involved in dust formation in evolved stars. By injecting metal atoms into the gas-phase, we investigate the role of metals on dust composition. We show the formation of composite particles made of pure metal (silver) nanoparticles embedded in an organosilicon dust. We study the impact of oxygen and show that it can inhibit dust formation, likely through the destruction of nucleation seeds.

5.
IEEE Trans Nanobioscience ; 15(5): 412-417, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27071186

RESUMO

The Discosoma recombinant red fluorescent (DsRed) protein is the latest member of the family of fluorescent proteins. It holds great promise for applications in biotechnology and cell biology. However, before being used for rational engineering, knowledge on the behavior of DsRed and the underlying mechanisms relating its structural stability and adsorption properties on solid surfaces is highly demanded. The physico-chemical analysis performed in this study reveals that the interaction of DsRed with SiO2 surfaces does not lead to complete protein denaturation after adsorption and dehydration. Nevertheless, the photoluminescence emission of dehydrated DsRed small droplets was found to be slightly red-shifted, peaking at 590 nm. The measured contact angles of droplets containing different concentration of DsRed proteins determine the interaction as hydrophilic one, however with larger contact angles for larger DsRed concentrations. The DsRed protein behavior is not pH-dependent with respect of the contact angle measurements, in agreement with previously reported studies.


Assuntos
Proteínas Luminescentes/química , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Teste de Materiais , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Proteína Vermelha Fluorescente
6.
Sci Total Environ ; 565: 863-871, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26953143

RESUMO

Silver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size <20nm) AgNPs embedded in silica layers. Two physical approaches were originally used to elaborate the nanocomposite structures: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7nm) beneath the free surface. The structural and optical properties of the nanostructures were studied by transmission electron microscopy and optical reflectance. The silver release from the nanostructures after 20h of immersion in buffered water was measured by inductively coupled plasma mass spectrometry and ranges between 0.02 and 0.49µM. The short-term toxicity of Ag to photosynthesis of Chlamydomonas reinhardtii was assessed by fluorometry. The obtained results show that embedding AgNPs reduces the interactions with the buffered water free media, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for a given host matrix. This provides a procedure to tailor the toxicity of nanocomposites containing AgNPs.


Assuntos
Antibacterianos/toxicidade , Chlamydomonas reinhardtii/efeitos dos fármacos , Monitoramento Ambiental/métodos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...