Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 99(1-1): 013110, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30780262

RESUMO

We characterize the influence of different intersection mixing rules for particle tracking simulations on transport properties through three-dimensional discrete fracture networks. It is too computationally burdensome to explicitly resolve all fluid dynamics within a large three-dimensional fracture network. In discrete fracture network (DFN) models, mass transport at fracture intersections is modeled as a subgrid scale process based on a local Péclet number. The two most common mass transfer mixing rules are (1) complete mixing, where diffusion dominates mass transfer, and (2) streamline routing, where mass follows pathlines through an intersection. Although it is accepted that mixing rules impact local mass transfer through single intersections, the effect of the mixing rule on transport at the fracture network scale is still unresolved. Through the use of explicit particle tracking simulations, we study transport through a quasi-two-dimensional lattice network and a three-dimensional network whose fracture radii follow a truncated power-law distribution. We find that the impact of the mixing rule is a function of the initial particle injection condition, the heterogeneity of the velocity field, and the geometry of the network. Furthermore, our particle tracking simulations show that the mixing rule can particularly impact concentrations on secondary flow pathways. We relate these local differences in concentration to reactive transport and show that streamline routing increases the average mixing rate in DFN simulations.

2.
IEEE Trans Vis Comput Graph ; 23(8): 1896-1909, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27333605

RESUMO

We present an analysis and visualization prototype using the concept of a flow topology graph (FTG) for characterization of flow in constrained networks, with a focus on discrete fracture networks (DFN), developed collaboratively by geoscientists and visualization scientists. Our method allows users to understand and evaluate flow and transport in DFN simulations by computing statistical distributions, segment paths of interest, and cluster particles based on their paths. The new approach enables domain scientists to evaluate the accuracy of the simulations, visualize features of interest, and compare multiple realizations over a specific domain of interest. Geoscientists can simulate complex transport phenomena modeling large sites for networks consisting of several thousand fractures without compromising the geometry of the network. However, few tools exist for performing higher-level analysis and visualization of simulated DFN data. The prototype system we present addresses this need. We demonstrate its effectiveness for increasingly complex examples of DFNs, covering two distinct use cases - hydrocarbon extraction from unconventional resources and transport of dissolved contaminant from a spent nuclear fuel repository.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA