Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38921878

RESUMO

Copolymers based on vinylidene fluoride are potential materials for ferroelectric memory elements. The trend in studies showing that a decrease in the degree of crystallinity can lead to an unexpected increase in the electric breakdown field is noted. An analysis of the literature data reveals that in fluorine-containing ferroelectric polymers, when using a bipolar triangular field, the hysteresis loop has an unclosed shape, with each subsequent loop being accompanied by a decrease in the dielectric response. In this work, the effect of the structure of self-polarized films of copolymers of vinylidene fluoride with tetrafluoroethylene and hexafluoropropylene on breakdown processes was studied. The structure of the polymer films was monitored using infrared spectroscopy (IR) and X-ray diffraction. Kelvin probe force microscopy (KPFM) was applied to characterize the local electrical properties of the polymers. For the films of the first copolymer, which crystallize in the polar ß-phase, asymmetry in the dielectric response was observed at fields greater than the coercive field. For the films of the copolymers of vinylidene fluoride with hexafluoropropylene, which crystallize predominantly in the nonpolar α-phase, polarization switching processes have also been observed, but at lower electric fields. The noted phenomena will help to identify the influence of the structure of ferroelectric polymers on their electrical properties.

2.
Nanomaterials (Basel) ; 13(21)2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37947696

RESUMO

The values of the surface potentials of two sides of films of polyvinylidene fluoride, and its copolymers with tetrafluoroethylene and hexafluoropropylene, were measured by the Kelvin probe method. The microstructures of the chains in the surfaces on these sides were evaluated by ATR IR spectroscopy. It was found that the observed surface potentials differed in the studied films. Simultaneously, it was observed from the IR spectroscopy data that the microstructures of the chains on both sides of the films also differed. It is concluded that the formation of the surface potential in (self-polarized) ferroelectric polymers is controlled by the microstructure of the surface layer. The reasons for the formation of a different microstructure on both sides of the films are suggested on the basis of the general regularities of structure formation in flexible-chain crystallizing polymers.

3.
Sensors (Basel) ; 23(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37766032

RESUMO

This paper presents an effective compact model of current transfer for the estimation of hysteresis parameters on the volt-ampere characteristics of resonant-tunneling diodes. In the framework of the compact model, the appearance of hysteresis is explained as a manifestation of internal bistability due to interelectronic interaction in the channel of the resonant-tunneling structure. Unlike the models based on the method of equivalent circuits, the interelectronic interaction in the compact model is taken into account using the concentration parameter. Model validation allowed us to confirm the high accuracy of the model not only at the initial section of the volt-ampere characteristics, but also at the hysteresis parameters traditionally predicted with low accuracy, namely the loop width (∆ < 0.5%) and contrast (∆ < 7%). Thus, it is concluded that the models are promising for integration into systems for synthesizing the electrical characteristics of resonant-tunneling diodes.

4.
Polymers (Basel) ; 15(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36987260

RESUMO

This paper is devoted to the study of the structure and thermomechanical properties of PVDF-based ferroelectric polymer film. Transparent electrically conductive ITO coatings are applied to both sides of such a film. In this case, such material acquires additional functional properties due to piezoelectric and pyroelectric effects, forming, in fact, a full-fledged flexible transparent device, which, for example, will emit a sound when an acoustic signal is applied, and under various external influences can generate an electrical signal. The use of such structures is associated with the influence of various external influences on them: thermomechanical loads associated with mechanical deformations and temperature effects during operation, or when applying conductive layers to the film. The article presents structure investigation and its change during high-temperature annealing using IR spectroscopy and comparative results of testing a PVDF film before and after deposition of ITO layers for uniaxial stretching, its dynamic mechanical analysis, DSC, as well as measurements of the transparency and piezoelectric properties of such structure. It is shown that the temperature-time mode of deposition of ITO layers has little effect on the thermal and mechanical properties of PVDF films, taking into account their work in the elastic region, slightly reducing the piezoelectric properties. At the same time, the possibility of chemical interactions at the polymer-ITO interface is shown.

5.
Polymers (Basel) ; 14(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36145940

RESUMO

Composite nanomaterials have been prepared through thermal decomposition of palladium diacetate. The composite contains palladium nanoparticles embedded in high-pressure polyethylene. The materials were studied by a number of different physico-chemical methods, such as transmission electron microscopy, X-ray diffraction, X-ray absorption spectroscopy, electron paramagnetic resonance, and EXAFS. The average size of the nanoparticles is 7.0 ± 0.5 nm. It is shown that with the decrease of metal content in the polymer matrix the average size of nanoparticles decreased from 7 to 6 nm, and the coordination number of palladium also decreased from 7 to 5.7. The mean size of palladium particles increases with the growing concentration of palladium content in the matrix. It is shown that the electrophysical properties of the material obtained depend on the filler concentration. The chemical composition of palladium components includes metallic palladium, palladium (III) oxide, and palladium dioxide. All samples have narrow lines (3-5 Oe) with a g factor of around two in the electron paramagnetic resonance (EPR) spectra. It is shown that EPR lines have uneven boarding by saturation lines investigation. The relaxation component properties are different for spectral components. It leads to the spectrum line width depending on the magnetic field value. At first approximation, the EPR spectra can be described as a sum of two Lorentzian function graphs, corresponding to the following two paramagnetic centers: one is on the surface, and one is inside the palladium particles. Some of the experimental characteristics were measured for the first time. The data obtained indicate interesting properties of palladium-based nanocomposites, which will be useful for obtaining products based on these materials.

6.
Materials (Basel) ; 15(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35207987

RESUMO

Embedded copper mesh coatings with low sheet resistance and high transparency were formed using a low-cost Cu seed mesh obtained with a magnetron sputtering on a cracked template, and subsequent operations electroplating and embedding in a photocurable resin layer. The influence of the mesh size on the optoelectric characteristics and the electromagnetic shielding efficiency in a wide frequency range is considered. In optimizing the coating properties, a shielding efficiency of 49.38 dB at a frequency of 1 GHz, with integral optical transparency in the visible range of 84.3%, was obtained. Embedded Cu meshes have been shown to be highly bending stable and have excellent adhesion strength. The combination of properties and economic costs for the formation of coatings indicates their high prospects for practical use in shielding transparent objects, such as windows and computer monitors.

7.
Materials (Basel) ; 14(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885331

RESUMO

The study was devoted to the creation of transparent electrodes based on highly conductive mesh structures. The analysis and reasonable choice of technological approaches to the production of such materials with a high Q factor (the ratio of transparency and electrical conductivity) were carried out. The developed manufacturing technology consists of the formation of grooves in a transparent substrate by photolithography methods, followed by reactive ion plasma etching and their metallization by chemical deposition using the silver mirror reaction. Experimental samples of a transparent electrode fabricated using this technology have a sheet resistance of about 0.1 Ω/sq with a light transmittance in the visible wavelength range of more than 60%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...