Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 208, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246607

RESUMO

Fear effects of predators on prey distributions are seldom considered in marine environments, especially over large spatial scales and in conservation contexts. To fill these major gaps, we tested the Seascape of Fear Hypothesis in the Benguela marine ecosystem off South Africa. Using electronic tracking data, we showed that Cape gannets and their predator, the Cape fur seal, co-occurred in daytime and competed with fisheries within coastal areas. At night, gannets are particularly vulnerable to seals, and 28% of the birds returned to the safety of their breeding colony. The remaining 72% slept at the sea surface, but shifted to offshore areas with lower seal attendance, reducing predation risk by 25%. Overall, our integrative study demonstrates how fear and competition shape the seascape of threatened Cape gannets within a marine environment perturbed by climate change and overfishing. Such knowledge has strong implications for the design of marine protected areas.


Assuntos
Pesqueiros , Focas Verdadeiras , Animais , Aves , Conservação dos Recursos Naturais , Ecossistema , Medo
2.
Sci Adv ; 7(10)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658194

RESUMO

Migratory marine species cross political borders and enter the high seas, where the lack of an effective global management framework for biodiversity leaves them vulnerable to threats. Here, we combine 10,108 tracks from 5775 individual birds at 87 sites with data on breeding population sizes to estimate the relative year-round importance of national jurisdictions and high seas areas for 39 species of albatrosses and large petrels. Populations from every country made extensive use of the high seas, indicating the stake each country has in the management of biodiversity in international waters. We quantified the links among national populations of these threatened seabirds and the regional fisheries management organizations (RFMOs) which regulate fishing in the high seas. This work makes explicit the relative responsibilities that each country and RFMO has for the management of shared biodiversity, providing invaluable information for the conservation and management of migratory species in the marine realm.

3.
Ecol Evol ; 10(20): 11277-11295, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144964

RESUMO

Seasonal and annual climate variations are linked to fluctuations in the abundance and distribution of resources, posing a significant challenge to animals that need to adjust their foraging behavior accordingly. Particularly during adverse conditions, and while energetically constrained when breeding, animals ideally need to be flexible in their foraging behavior. Such behavioral plasticity may separate "winners" from "losers" in light of rapid environmental changes due to climate change. Here, the foraging behavior of four sub-Antarctic albatross species was investigated from 2015/16 to 2017/18, a period characterized by pronounced environmental variability. Over three breeding seasons on Marion Island, Prince Edward Archipelago, incubating wandering (WA, Diomedea exulans; n = 45), grey-headed (GHA, Thalassarche chrysostoma; n = 26), sooty (SA, Phoebetria fusca; n = 23), and light-mantled (LMSA, P. palpebrata; n = 22) albatrosses were tracked with GPS loggers. The response of birds to environmental variability was investigated by quantifying interannual changes in their foraging behavior along two axes: spatial distribution, using kernel density analysis, and foraging habitat preference, using generalized additive mixed models and Bayesian mixed models. All four species were shown to respond behaviorally to environmental variability, but with substantial differences in their foraging strategies. WA was most general in its habitat use defined by sea surface height, eddy kinetic energy, wind speed, ocean floor slope, and sea-level anomaly, with individuals foraging in a range of habitats. In contrast, the three smaller albatrosses exploited two main foraging habitats, with habitat use varying between years. Generalist habitat use by WA and interannually variable use of habitats by GHA, SA, and LMSA would likely offer these species some resilience to predicted changes in climate such as warming seas and strengthening of westerly winds. However, future investigations need to consider other life-history stages coupled with demographic studies, to better understand the link between behavioral plasticity and population responses.

4.
Ecol Evol ; 10(15): 8506-8516, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32788996

RESUMO

Understanding changes in abundance is crucial for conservation, but population growth rates often vary over space and time. We use 40 years of count data (1979-2019) and Bayesian state-space models to assess the African penguin Spheniscus demersus population under IUCN Red List Criterion A. We deconstruct the overall decline in time and space to identify where urgent conservation action is needed. The global African penguin population met the threshold for Endangered with a high probability (97%), having declined by almost 65% since 1989. An historical low of ~17,700 pairs bred in 2019. Annual changes were faster in the South African population (-4.2%, highest posterior density interval, HPDI: -7.8 to -0.6%) than the Namibian one (-0.3%, HPDI: -3.3 to +2.6%), and since 1999 were almost -10% at South African colonies north of Cape Town. Over the 40-year period, the Eastern Cape colonies went from holding ~25% of the total penguin population to ~40% as numbers decreased more rapidly elsewhere. These changes coincided with an altered abundance and availability of the main prey of African penguins. Our results underline the dynamic nature of population declines in space as well as time and highlight which penguin colonies require urgent conservation attention.

5.
Environ Pollut ; 263(Pt A): 114394, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32234635

RESUMO

Evidence is accumulating about the impacts of plastics on marine life. The prevalence of plastics in seabird nests has been used as an indicator of levels of this pollutant in the ocean. However, the lack of a framework for defining sample sizes and errors associated with estimating the prevalence of plastic in nests prevents researchers from optimising time and reducing impacts of fieldwork. We present a method to determine the confidence intervals for the prevalence of debris in seabird nests and provide, for the first time, information on the prevalence of these items in nests of the Hartlaub's gull Larus hartlaubii, the African penguin Spheniscus demersus, the great white pelican Pelecanus onocrotalus, and the white-breasted cormorant Phalacrocorax lucidus in South Africa. The method, based on observations and resampling simulations and tested here for nests of 12 seabird species from 15 locations worldwide, allows for straightforward hypothesis testing. Appropriate sample sizes can be defined by combining this method with a Bayesian approach. We show that precise estimates of prevalence of debris in nests can be obtained by sampling around 250 nests. Smaller sample sizes can be useful for obtaining rough estimates. For the Hartlaub's gull, the African penguin, the great white pelican, and the white-breasted cormorant, debris were present in 0.75%, 3.00%, 6.41%, and 25.62% of the respective nests. Our approach will help researchers to determine errors associated with the prevalence of debris recorded in seabird nests and to optimise time and costs spent collecting data. It can also be applied to estimate confidence intervals and define sample sizes for assessing prevalence of plastic ingestion by any organism.


Assuntos
Plásticos , Resíduos/análise , Animais , Teorema de Bayes , Aves , Intervalos de Confiança , Monitoramento Ambiental , Prevalência , Tamanho da Amostra , África do Sul
6.
Ecol Evol ; 7(11): 3894-3903, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28616186

RESUMO

King penguins make up the bulk of avian biomass on a number of sub-Antarctic islands where they have a large functional effect on terrestrial and marine ecosystems. The same applies at Marion Island where a substantial proportion of the world population breeds. In spite of their obvious ecological importance, the at-sea distribution and behavior of this population has until recently remained entirely unknown. In addressing this information deficiency, we deployed satellite-linked tracking instruments on 15 adult king penguins over 2 years, April 2008 and 2013, to study their post-guard foraging distribution and habitat preferences. Uniquely among adult king penguins, individuals by and large headed out against the prevailing Antarctic Circumpolar Current, foraging to the west and southwest of the island. On average, individuals ventured a maximum distance of 1,600 km from the colony, with three individuals foraging close to, or beyond, 3,500 km west of the colony. Birds were mostly foraging south of the Antarctic Polar Front and north of the southern boundary of the Antarctic Circumpolar Current. Habitat preferences were assessed using boosted regression tree models which indicated sea surface temperate, depth, and chorophyll a concentration to be the most important predictors of habitat selection. Interestingly, king penguins rapidly transited the eddy-rich area to the west of Marion Island, associated with the Southwest Indian Ocean Ridge, which has been shown to be important for foraging in other marine top predators. In accordance with this, the king penguins generally avoided areas with high eddy kinetic energy. The results from this first study into the behavioral ecology and at-sea distribution of king penguins at Marion Island contribute to our broader understanding of this species.

7.
Curr Biol ; 27(4): 563-568, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28190725

RESUMO

Climate change and fisheries are transforming the oceans, but we lack a complete understanding of their ecological impact [1-3]. Environmental degradation can cause maladaptive habitat selection, inducing ecological traps with profound consequences for biodiversity [4-6]. However, whether ecological traps operate in marine systems is unclear [7]. Large marine vertebrates may be vulnerable to ecological traps [6], but their broad-scale movements and complex life histories obscure the population-level consequences of habitat selection [8, 9]. We satellite tracked postnatal dispersal in African penguins (Spheniscus demersus) from eight sites across their breeding range to test whether they have become ecologically trapped in the degraded Benguela ecosystem. Bayesian state-space and habitat models show that penguins traversed thousands of square kilometers to areas of low sea surface temperatures (14.5°C-17.5°C) and high chlorophyll-a (∼11 mg m-3). These were once reliable cues for prey-rich waters, but climate change and industrial fishing have depleted forage fish stocks in this system [10, 11]. Juvenile penguin survival is low in populations selecting degraded areas, and Bayesian projection models suggest that breeding numbers are ∼50% lower than if non-impacted habitats were used, revealing the extent and effect of a marine ecological trap for the first time. These cascading impacts of localized forage fish depletion-unobserved in studies on adults-were only elucidated via broad-scale movement and demographic data on juveniles. Our results support suspending fishing when prey biomass drops below critical thresholds [12, 13] and suggest that mitigation of marine ecological traps will require matching conservation action to the scale of ecological processes [14].


Assuntos
Distribuição Animal , Conservação dos Recursos Naturais , Comportamento Alimentar , Pesqueiros , Spheniscidae/fisiologia , Fatores Etários , Animais , Ecossistema , Namíbia , África do Sul
8.
Glob Chang Biol ; 20(10): 3004-25, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24802817

RESUMO

Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed.


Assuntos
Organismos Aquáticos , Mudança Climática , Camada de Gelo , Regiões Antárticas , Biota , Ecossistema , Oceanos e Mares , Movimentos da Água , Vento
9.
PLoS One ; 8(8): e71429, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936507

RESUMO

Post-breeding migration in land-based marine animals is thought to offset seasonal deterioration in foraging or other important environmental conditions at the breeding site. However the inter-breeding distribution of such animals may reflect not only their optimal habitat, but more subtle influences on an individual's migration path, including such factors as the intrinsic influence of each locality's paleoenvironment, thereby influencing animals' wintering distribution. In this study we investigated the influence of the regional marine environment on the migration patterns of a poorly known, but important seabird group. We studied the inter-breeding migration patterns in three species of Eudyptes penguins (E. chrysolophus, E. filholi and E. moseleyi), the main marine prey consumers amongst the World's seabirds. Using ultra-miniaturized logging devices (light-based geolocators) and satellite tags, we tracked 87 migrating individuals originating from 4 sites in the southern Indian Ocean (Marion, Crozet, Kerguelen and Amsterdam Islands) and modelled their wintering habitat using the MADIFA niche modelling technique. For each site, sympatric species followed a similar compass bearing during migration with consistent species-specific latitudinal shifts. Within each species, individuals breeding on different islands showed contrasting migration patterns but similar winter habitat preferences driven by sea-surface temperatures. Our results show that inter-breeding migration patterns in sibling penguin species depend primarily on the site of origin and secondly on the species. Such site-specific migration bearings, together with similar wintering habitat used by parapatrics, support the hypothesis that migration behaviour is affected by the intrinsic characteristics of each site. The paleo-oceanographic conditions (primarily, sea-surface temperatures) when the populations first colonized each of these sites may have been an important determinant of subsequent migration patterns. Based on previous chronological schemes of taxonomic radiation and geographical expansion of the genus Eudyptes, we propose a simple scenario to depict the chronological onset of contrasting migration patterns within this penguin group.


Assuntos
Migração Animal/fisiologia , Comportamento Animal/fisiologia , Spheniscidae/fisiologia , Animais , Cruzamento , Geografia , Estações do Ano , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...