Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38671849

RESUMO

According to a survey, the medicinal use of Androstachys johnsonii Prain is kept secret by traditional healers. Considering that inflammation and oxidative stress are major risk factors for the progression of various chronic diseases and disorders, we resolved to investigate the antioxidant and anti-inflammatory potentials of A. johnsonii using in vitro and cell-based assays. The antioxidant activity of A. johnsonii hydroethanolic leaf extract (AJHLE) was evaluated using the ABTS, DPPH, and FRAP assays. Its cytotoxic effect was assessed on RAW 264.7 macrophages using an MTT assay. Then, its anti-inflammatory effect was evaluated by measuring the NO production and 15-LOX inhibitory activities. Moreover, its preventive effect on ROS production and its regulatory effect on the expression of pro-inflammatory mediators such as IL-1ß, IL-10, TNF-α, and COX-2 were determined using established methods. AJHLE strongly inhibited radicals such as ABTS•+, DPPH•, and Fe3+-TPTZ with IC50 values of 9.07 µg/mL, 8.53 µg/mL, and 79.09 µg/mL, respectively. Additionally, AJHLE induced a significant (p < 0.05) cytotoxic effect at 100 µg/mL, and when tested at non-cytotoxic concentrations, it inhibited NO and ROS production in LPS-stimulated RAW 264.7 macrophages in a concentration-dependent manner. Furthermore, AJHLE showed that its anti-inflammatory action occurs via the inhibition of 15-LOX activity, the downregulation of COX-2, TNF-α, and IL-1ß expression, and the upregulation of IL-10 expression. Finally, chemical investigation showed that AJHLE contains significant amounts of procyanidin, epicatechin, rutin, and syringic acid which support its antioxidant and anti-inflammatory activities. These findings suggest that A. johnsonii is a potential source of therapeutic agents against oxidative stress and inflammatory-related diseases.

2.
Antioxidants (Basel) ; 13(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38671904

RESUMO

Oxidative stress is pivotal in the pathology of many diseases. This study investigated the antioxidant phytochemistry of avocado (Persea americana Mill.) peel. Different solvent extracts (dichloromethane, ethyl acetate, methanol, and water) of avocado peel were subjected to total phenol and flavonoid quantification, as well as in vitro radical scavenging and ferric reducing evaluation. The methanol extract was subjected to gradient column chromatographic fractionation. Fraction 8 (eluted with hexane:chloroform:methanol volume ratio of 3:6.5:0.5, respectively) was subjected to LC-MS analysis. It was assessed for cellular inhibition of lipid peroxidation and lipopolysaccharide (LPS)-induced ROS and NO production. The DPPH radical scavenging mechanism of chlorogenic acid was investigated using Density Functional Theory (DFT). The methanol extract and fraction 8 had the highest phenol content and radical scavenging activity. Chlorogenic acid (103.5 mg/mL) and 1-O-caffeoylquinic acid (102.3 mg/mL) were the most abundant phenolics in the fraction. Fraction 8 and chlorogenic acid dose-dependently inhibited in vitro (IC50 = 5.73 and 6.17 µg/mL) and cellular (IC50 = 15.9 and 9.34 µg/mL) FeSO4-induced lipid peroxidation, as well as LPS-induced ROS (IC50 = 39.6 and 28.2 µg/mL) and NO (IC50 = 63.5 and 107 µg/mL) production, while modulating antioxidant enzyme activity. The fraction and chlorogenic acid were not cytotoxic. DFT analysis suggest that an electron transfer, followed by proton transfer at carbons 3'OH and 4'OH positions may be the radical scavenging mechanism of chlorogenic acid. Considering this study is bioassay-guided, it is logical to conclude that chlorogenic acid strongly influences the antioxidant capacity of avocado fruit peel.

3.
Front Pharmacol ; 14: 1205414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416061

RESUMO

Background: Sarcocephalus pobeguinii (Hua ex Pobég) is used in folk medicine to treat oxidative-stress related diseases, thereby warranting the investigation of its anticancer and anti-inflammatory properties. In our previous study, the leaf extract of S. pobeguinii induced significant cytotoxic effect against several cancerous cells with high selectivity indexes towards non-cancerous cells. Aim: The current study aims to isolate natural compounds from S. pobeguinii, and to evaluate their cytotoxicity, selectivity and anti-inflammatory effects as well as searching for potential target proteins of bioactive compounds. Methods: Natural compounds were isolated from leaf, fruit and bark extracts of S. pobeguinii and their chemical structures were elucidated using appropriate spectroscopic methods. The antiproliferative effect of isolated compounds was determined on four human cancerous cells (MCF-7, HepG2, Caco-2 and A549 cells) and non-cancerous Vero cells. Additionally, the anti-inflammatory activity of these compounds was determined by evaluating the nitric oxide (NO) production inhibitory potential and the 15-lipoxygenase (15-LOX) inhibitory activity. Furthermore, molecular docking studies were carried out on six putative target proteins found in common signaling pathways of inflammation and cancer. Results: Hederagenin (2), quinovic acid 3-O-[α-D-quinovopyranoside] (6) and quinovic acid 3-O-[ß-D-quinovopyranoside] (9) exhibited significant cytotoxic effect against all cancerous cells, and they induced apoptosis in MCF-7 cells by increasing caspase-3/-7 activity. (6) showed the highest efficacy against all cancerous cells with poor selectivity (except for A549 cells) towards non-cancerous Vero cells; while (2) showed the highest selectivity warranting its potential safety as a chemotherapeutic agent. Moreover, (6) and (9) significantly inhibited NO production in LPS-stimulated RAW 264.7 cells which could mainly be attributed to their high cytotoxic effect. Besides, the mixture nauclealatifoline G and naucleofficine D (1), hederagenin (2) and chletric acid (3) were active against 15-LOX as compared to quercetin. Docking results showed that JAK2 and COX-2, with the highest binding scores, are the potential molecular targets involved in the antiproliferative and anti-inflammatory effects of bioactive compounds. Conclusion: Overall, hederagenin (2), which selectively killed cancer cells with additional anti-inflammatory effect, is the most prominent lead compound which may be further investigated as a drug candidate to tackle cancer progression.

4.
Biomed Pharmacother ; 163: 114779, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119739

RESUMO

Recently the complexation-mediated antioxidative and glycaemic control synergism between zinc(II) and caffeic acid was demonstrated in vitro. The present study evaluated the complexation-mediated antidiabetic and antioxidative synergism between zinc(II) and caffeic acid in diabetic rats and the possible underlying mechanisms. Male SD rats were induced with diabetes using 10% fructose and 40 mg/kg bw streptozotocin. The diabetic rats were treated with Zn(II)-caffeic acid complex and its precursors (caffeic acid and zinc acetate) for 4 weeks at predetermined doses. The effect of the treatments on diabetes and oxidative stress was measured. The complex ameliorated diabetic alterations. It reduced polyphagia and polydipsia and recovered weight loss. It increased insulin secretion, insulin sensitivity, hepatic and muscle glycogen, muscle hexokinase activity and Akt phosphorylation, which resulted in improved glucose tolerance and reduced blood glucose in the diabetic rats. The complex concomitantly reduced systemic and tissue lipid peroxidation and increased antioxidant enzymes activity in the diabetic rats. The complex outperformed the antidiabetic and antioxidative action of its precursors and had a broader bioactivity profile. Complexing zinc acetate with caffeic acid improved their ameliorative effect on insulin resistance by ∼24% and 42%, respectively, as well as their anti-hyperglycaemic action by ∼24 - 36% and ∼42 - 47%, respectively, suggesting a complexation-mediated synergism. In some instances, the antidiabetic action of the complex was comparable to metformin, while its antioxidant effect was better than that of metformin. Zinc(II)-caffeic acid complexation may be an alternative approach to improving the efficacy of antidiabetic and antioxidative therapy with minimal adverse or side effects.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Ratos , Masculino , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Acetato de Zinco/farmacologia , Acetato de Zinco/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos Sprague-Dawley , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Metformina/uso terapêutico , Glicemia , Zinco/uso terapêutico , Insulina
5.
Med Chem ; 19(2): 147-162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35726433

RESUMO

BACKGROUND: The role of Zn(II) in storage, insulin secretion and function has been documented, while plant phenolics have antioxidant and other pharmacological credence. OBJECTIVE: The study aimed at synthesizing a novel medicinal Zn(II) complex. The medicinal properties of zinc(II) and caffeic acid were considered in synthesizing a novel complex with promising and improved antioxidant and anti-hyperglycaemic attributes. METHODS: Complex synthesis was done using a 1:2 molar ratio of zinc acetate and caffeic acid and structurally characterized using NMR, FT-IR, high resolution-mass spectroscopy and HPLC. Its cellular toxicity was assessed in Chang liver cells and L-myotubes. In vitro, cellular, and isolated tissue models were used to evaluate the antioxidant and anti-hyperglycaemic properties of the complex relative to its precursors. Molecular docking was used to investigate the interaction with insulin signalling target proteins: GLUT-4 and protein kinase B (Akt/PKB). RESULTS: Zinc(II) and caffeic acid interacted via Zn:O4 coordination, with the complex having one moiety of Zn(II) and 2 moieties of caffeic acid. The complex showed in vitro radical scavenging, α- glucosidase and α-amylase inhibitory activity up to 2.6 folds stronger than caffeic acid. The ability to inhibit lipid peroxidation (IC50 = 26.4 µM) and GSH depletion (IC50 = 16.8 µM) in hepatocytes was comparable to that of ascorbic acid (IC50 = 24.5 and 29.2 µM) and about 2 folds stronger than caffeic acid. Complexation improved glucose uptake activity of caffeic acid in L-6 myotubes (EC50 = 23.4 versus 169 µM) and isolated rat muscle tissues (EC50 = 339 versus 603 µM). Molecular docking showed better interaction with insulin signalling target proteins (GLUT-4 and Akt/PKB) than caffeic acid. The complex was not hepatotoxic or myotoxic. CONCLUSION: Data suggest a synergistic antioxidant and anti-hyperglycaemic potential between zinc and caffeic acid, which could be attributed to the Zn:O4 coordination. Thus, it may be of medicinal relevance.


Assuntos
Antioxidantes , Hipoglicemiantes , Ratos , Animais , Antioxidantes/química , Hipoglicemiantes/química , Acetato de Zinco , Proteínas Proto-Oncogênicas c-akt , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Glucosidases/metabolismo , Insulina , Zinco/química
6.
Biomed Pharmacother ; 154: 113600, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36037784

RESUMO

Zinc and syringic acid have metabolic and antioxidant medicinal potentials. A novel zinc(II)-syringic acid complex with improved anti-hyperglycaemic and antioxidant potential was developed. Zinc(II) was complexed with syringic acid in a 1:2 molar ratio and characterized using FT-IR, 1H NMR and LC-MS. Different experimental models were used to compare the anti-hyperglycaemic and antioxidant properties between the complex and precursors. A Zn(II)-bisyringate.2H2O complex was formed. The in vitro radical scavenging and Fe3+ reducing antioxidant, antiglycation, and α-glucosidase inhibitory activities of the complex were 1.8-5.2 folds stronger than those of the syringic acid precursor and comparable to those of the positive controls. The complex possessed an increased ability to inhibit lipid peroxidation (by 1.6-1.7 folds) and glutathione depletion (2.8-3 folds) relative to syringic acid in Chang liver cells and liver tissues isolated from rats. The complex exhibited a higher glucose uptake effect (EC50 = 20.4 and 386 µM) than its precursors (EC50 = 71.1 and 6460 µM) in L6-myotubes and psoas muscle tissues isolated from rats, respectively, which may be linked to the observed increased cellular zinc uptake potentiated by complexation. Tissue glucose uptake activity was accompanied by increased hexokinase activity, suggesting increased glucose utilization. Moreover, treatment increased tissue phospho-Akt/pan-Akt ratio. The complex had strong molecular docking scores than syringic acid with target proteins linked to diabetes. The presence of two syringic acid moieties and Zn(II) in the complex influenced its potency. The complex was not hepatotoxic and myotoxic in vitro. Zinc-syringic acid complexation may be a novel promising therapeutic approach for diabetes and oxidative complications.


Assuntos
Antioxidantes , Zinco , Animais , Antioxidantes/metabolismo , Ácido Gálico/análogos & derivados , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco/farmacologia
7.
J Food Biochem ; 46(10): e14360, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35929608

RESUMO

Natural supplements are important in diabetes and oxidative stress management. A complexation-mediated antihyperglycemic and antioxidant synergism between zinc(II) and p-coumaric acid was investigated. p-Coumaric acid was complexed with ZnSO4 and characterized by FT-IR, 1 H NMR, and mass spectroscopy. The antioxidant and antihyperglycemic potential of the complex and precursors were evaluated with different experimental models. Molecular docking with target proteins linked to diabetes was performed. A Zn(II)-bicoumarate.2H2 O complex was formed. The in vitro radical scavenging, α-glucosidase inhibitory, antiglycation, and anti-lipid peroxidative activities of the complex were several folds stronger than p-coumaric acid. In Chang liver cells and rat liver tissues, the complex inhibited lipid peroxidation (IC50  = 56.2 and 398 µM) and GSH depletion (IC50  = 33.9 and 38.7 µM), which was significantly stronger (2.3-5.4-folds) than p-coumaric acid and comparable to ascorbic acid. Zn(II) and p-coumaric synergistically modulated (1.7- and 2.8-folds than p-coumaric acid) glucose uptake in L-6 myotubes (EC50  = 10.7 µM) and rat muscle tissue (EC50  = 428 µM), which may be linked to the observed complexation-mediated increase in tissue zinc uptake. Glucose uptake activity was accompanied by increased hexokinase activity, suggesting increased glucose utilization. Docking scores α-glucosidase, GLUT-4, and PKB/Akt showed stronger interaction with the complex (-6.31 to -6.41 kcal/mol) compared to p-coumaric acid (-7.18 to -7.74 kcal/mol), which was influenced by the Zn(II) and bicoumarate moieties of the complex. In vitro, the complex was not hepatotoxic or myotoxic. Zn(II) complexation may be a therapeutic approach for improving the antioxidative and glycemic control potentials of p-coumaric acid. PRACTICAL APPLICATIONS: In functional medicine, natural supplements, plant-derived phenolics, and nutraceuticals are becoming popular in the management of diseases, including diabetes and oxidative stress. This has been largely attributed to their perceived holistic medicinal profile and the absence of notable toxicity concerns. In the past two decades, considerable attention has been drawn toward zinc mineral as a possible therapeutic supplement for diabetes due to its role in insulin secretion and reported insulin mimetic potentials. p-Coumaric acid is a known natural antioxidant with reported diabetes-related pharmacological effects. In this study, we took advantage of these properties and complexed both natural supplements, which resulted in a more potent nutraceutical with improved glycemic control and antioxidant potential. The complexation-mediated synergistic interaction between zinc and p-coumaric acid could be an important therapeutic approach in improving the use of these natural supplements or nutraceuticals in managing diabetes and associated oxidative complications.


Assuntos
Antioxidantes , Zinco , Animais , Antioxidantes/farmacologia , Ácido Ascórbico , Ácidos Cumáricos , Glucose/metabolismo , Controle Glicêmico , Hexoquinase , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Insulina , Minerais , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , alfa-Glucosidases
8.
Diabet Med ; 39(9): e14905, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35748705

RESUMO

AIM: This study was done to investigate the anti-diabetic and anti-oxidative synergism between zinc(II) and ferulic acid through complexation. METHODS: Zinc sulphate was complexed with ferulic acid in a 1:2 molar ratio. The complex was characterized using Fourier-transform infrared spectroscopy, proton NMR and high-resolution mass spectroscopy techniques and evaluated for cellular toxicity. In silico, in vitro, cell-based and tissue experimental models were used to test the anti-diabetic and anti-oxidant activities of the complex relative to its precursors. RESULTS: A zinc(II)-biferulate.2H2 O complex was formed. The in vitro radical scavenging, anti-lipid peroxidative and α-glucosidase and α-amylase inhibitory activity of the complex was 1.7-2.1 folds more potent than ferulic acid. Zn(II) complexation increased the anti-glycation activity of ferulic acid by 1.5 folds. The complex suppressed lipid peroxidation (IC50  = 48.6 and 331 µM) and GHS depletion (IC50  = 33.9 and 33.5 µM) in both Chang liver cells and isolated rat liver tissue. Its activity was 2.3-3.3 folds more potent than ferulic acid and statistically comparable to ascorbic acid. Zn(II) complexation afforded ferulic acid improved glucose uptake activity in L-6 myotube (EC50  = 11.7 vs. 45.7 µM) and isolated rat muscle tissue (EC50  = 501 and 1510 µM). Complexation increased muscle tissue zinc(II) uptake and hexokinase activity. Docking scores of the complex (-7.24 to -8.25 kcal/mol) and ferulic acid (-5.75 to 6.43 kcal/mol) suggest the complex had stronger interaction with protein targets related to diabetes, which may be attributed to the 2 ferulic acid moieties and Zn(II) in the complex. Moreover, muscle tissue showed increased phospho-Akt/pan-Akt ratio upon treatment with complex. The complex was not hepatotoxic and myotoxic at in vitro cellular level. CONCLUSION: Zn(II) complexation may be promising therapeutic approach for improving the glycaemic control and anti-oxidative potential of natural phenolic acids.


Assuntos
Diabetes Mellitus , Proteínas Proto-Oncogênicas c-akt , Animais , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Zinco/química , Zinco/farmacologia
9.
J Food Biochem ; 46(4): e13913, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34453451

RESUMO

The peel of pomegranate fruit contains antioxidant phytochemicals that may potentiate health benefits but remain under-explored. We evaluated the antioxidant, nutritional and phytochemical profiles of the peel of the "Wonderful" variety pomegranate and its influence on oxidative metabolic alterations in hepatic tissue. The peel contained appreciable amounts of some beneficial trace minerals and both essential and non-essential amino acids. Mostly Omega 3 and 6 fatty acids were found. The peel extracts exhibited in vitro radical scavenging and Fe3+ reducing antioxidant activities and dose-dependently prevented oxidative stress-induced lipid peroxidation increase and GSH depletion in both Chang liver cells (IC50 = 18.0 ± 1.46 and 11.2 ± 0.99 µg/mL, respectively) and isolated rat liver (IC50 = 96.7 ± 3.34 and 19.4 ± 3.36 µg/mL, respectively). The antioxidant effects were comparable to that of ascorbic and correlated with their phenolic profile. HPLC analysis further identified antioxidant phenolic acids (gallic acid, syringic acid ferulic acid p-coumaric acid or trans-4-hydroxycinnamic acid, etc.). The peel did not cause notable cytotoxicity in liver and kidney cells, which suggest minimal safety concerns. Metabolomics analysis revealed alterations in fatty acid, amino acids, and nucleic acid metabolisms following the induction of oxidative stress. These alterations were improved in the acetone extract-treated tissues, with concomitant activation of vitamin and selonocompound metabolisms. Data suggest that the fruit peel of "Wonderful" pomegranate may be an underutilized source of functional nutrients and antioxidants phenolic acids for optimum body function and mitigation hepatic oxidative damage and metabolic alterations as well as associated diseases. PRACTICAL APPLICATIONS: Although underutilized, documented evidence have shown that the wastes, like peels from fruits contain more phytochemicals than the edible pulp, making them potential sources of bioactive principles. In this study we exposed the nutritional, phytochemical and oxidative stress-related medicinal benefits of the peel of "Wonderful" pomegranate variety. The peel could ameliorate oxidative hepatic metabolic alterations. The peel of this fruit could be a source of beneficial micro and macro nutrients, as well as bioactive phenolics to improve oxidative health and mitigate oxidative hepatic damage and associated disease states. Medicinally utilizing the fruit's peel could reduce underutilized fruit wastes, increase the value of the fruit and benefit the bioeconomy.


Assuntos
Frutas , Punica granatum , Antioxidantes/química , Frutas/química , Fígado , Estresse Oxidativo , Fenóis/análise , Fenóis/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/química
10.
J Ethnopharmacol ; 285: 114868, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826541

RESUMO

ETHNOBOTANICAL RELEVANCE: Smoke from the wood of Acacia seyal Delile has been used by Sudanese women for making a smoke bath locally called Dukhan. The ritual is performed to relieve rheumatic pain, smooth skin, heal wounds and achieve general body relaxation. AIM OF THE STUDY: The present study was designed to investigate the in vitro anti-inflammatory effect of the smoke condensate using cyclooxygenase -1 (COX-1) and -2 (COX-2) as well as its potential genotoxic effects using the bacterial-based Ames test and the mammalian cells-based micronucleus/cytome and comet assays. MATERIAL AND METHODS: The smoke was prepared in a similar way to that commonly used traditionally by Sudanese women then condensed using a funnel. Cyclooxygenase assay was used to evaluate its in vitro anti-inflammatory activity. The neutral red uptake assay was conducted to determine the range of concentrations in the mammalian cells-based assays. The Ames, cytome and comet assays were used to assess its potential adverse (long-term) effects. RESULTS: The smoke condensate did not inhibit the cyclooxygenases at the highest concentration tested. All smoke condensate concentrations tested in the Salmonella/microsome assay induced mutation in both TA98 and TA100 in a dose dependent manner. A significant increase in the frequency of micronucleated cells, nucleoplasmic bridges and nuclear buds was observed in the cytome assay as well as in the % DNA damage in the comet assay. CONCLUSIONS: The findings indicated a dose dependent genotoxic potential of the smoke condensate in the bacterial and human C3A cells and may pose a health risk to women since the smoke bath is frequently practised. The study highlighted the need for further rigorous assessment of the risks associated with the smoke bath practice.


Assuntos
Acacia/química , Medicinas Tradicionais Africanas , Fumaça , Madeira/química , Adulto , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Testes de Mutagenicidade , Sudão
11.
J Food Biochem ; 45(12): e13997, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34750843

RESUMO

The perception that many fruit wastes, particularly the peel, contain more phytochemicals than the edible portions has been largely supported by scientific evidence, making them potential sources of bioactive and therapeutic phytochemicals. The peel and seed of Litchi (Litchi chinensis Sonn.) contain bioactive principles and have been shown to exhibit antioxidative, antidiabetic, cancer preventive, anti-obesogenic, and anti-inflammatory properties. This review presents a critical analysis of previous and current perspectives on the medicinal, toxicological, and phytochemical profiles of litchi fruit peel and seed, thus providing an evidence-based platform to explore their medicinal potential. A literature search was done on "PubMed," "Google Scholar," and "ScienceDirect." Peer-reviewed published data on the medicinal profiles of litchi fruit peel and seed were identified and critically analyzed. The fruit peel and seed improved glycemic control and insulin signaling and downregulated lipogenic and cholesterogenic processes. Their neuroprotective, hepatoprotective, and renal protective potentials were influenced by antioxidative and anti-inflammatory actions. The anticancer effect was mediated by upregulated proapoptotic, proinflammatory, antiproliferative, and anti-metastatic processes in cancer cells. Simple flavonols, sesquiterpenes, phenolic acids, jasmonates, and proathocyanidins are the possible bioactive principles influencing the medicinal effects. Appropriate toxicity studies are, however, still lacking. Litchi fruit wastes may be further studied as useful sources of therapeutic agents that may have medicinal relevance in oxidative, metabolic, vascular, and carcinogenic ailments. PRACTICAL APPLICATIONS: Underutilized fruit wastes contribute to environmental pollution. Interestingly, these wastes contain phytochemicals that could be of medicinal relevance if their medicinal potentials are maximized. Litchi fruit is a widely consumed fruit with commercial value. Its peel and seeds contribute to fruit wastes. The review exposes the medicinal potential and bioactive principles and/or nutrients of the fruit's peel and seed while elucidating the underlying therapeutic mechanisms or modes of actions through which litchi peel and seed potentiate medicinal effects. Thus, the review provides an evidence-based platform to explore the medicinal potential of underutilized wastes from litchi fruit. Additionally, the fruit peel and seed could be low-cost residues that could afford ecofriendly opportunity if their medicinal potentials are properly maximized.


Assuntos
Frutas , Litchi , Antioxidantes , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
12.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360891

RESUMO

Globally, HIV/AIDS and cancer are increasingly public health problems and continue to exist as comorbidities. The sub-Saharan African region has the largest number of HIV infections. Malignancies previously associated with HIV/AIDS, also known as the AIDS-defining cancers (ADCs) have been documented to decrease, while the non-AIDS defining cancer (NADCs) are on the rise. On the other hand, cancer is a highly heterogeneous disease and precision oncology as the most effective cancer therapy is gaining attraction. Among HIV-infected individuals, the increased risk for developing cancer is due to the immune system of the patient being suppressed, frequent coinfection with oncogenic viruses and an increase in risky behavior such as poor lifestyle. The core of personalised medicine for cancer depends on the discovery and the development of biomarkers. Biomarkers are specific and highly sensitive markers that reveal information that aid in leading to the diagnosis, prognosis and therapy of the disease. This review focuses mainly on the risk assessment, diagnostic, prognostic and therapeutic role of various cancer biomarkers in HIV-positive patients. A careful selection of sensitive and specific HIV-associated cancer biomarkers is required to identify patients at most risk of tumour development, thus improving the diagnosis and prognosis of the disease.


Assuntos
Síndrome da Imunodeficiência Adquirida/diagnóstico , Síndrome da Imunodeficiência Adquirida/epidemiologia , HIV-1 , Neoplasias/diagnóstico , Neoplasias/epidemiologia , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Síndrome da Imunodeficiência Adquirida/virologia , Terapia Antirretroviral de Alta Atividade/métodos , Biomarcadores Tumorais/classificação , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Comorbidade , Detecção Precoce de Câncer , Feminino , Humanos , Masculino , Neoplasias/genética , Neoplasias/metabolismo , Vírus Oncogênicos , Medicina de Precisão/métodos , Prevalência , Prognóstico , Medição de Risco , Fatores de Risco , Resultado do Tratamento
13.
J Pharm Pharmacol ; 73(12): 1703-1714, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34109975

RESUMO

OBJECTIVES: Our aim was to synthesize, characterize and evaluate the antihyperglycaemic and anti-oxidative properties of a new Zn(II) complex of vanillic acid. METHODS: The complex was synthesized using ZnSO4.7H2O and vanillic acid as precursors. NMR and FTIR techniques were used to characterize the synthesized complex. The cytotoxicity of the complex was measured. The antihyperglycemic and anti-oxidative properties of the complex were evaluated using in vitro, cell-based and ex vivo models and compared with those of its precursors. KEY FINDINGS: Zn(II) coordinated with vanillic acid via a Zn(O6) coordination, with the complex having three moieties of vanillic acid. The radical scavenging, Fe3+ reducing and hepatic antilipid peroxidative activity of the complex were, respectively, 2.3-, 1.8- and 9.7-folds more potent than vanillic acid. Complexation increased the α-glucosidase and glycation inhibitory activity of vanillic acid by 3- and 2.6-folds, respectively. Zn(II) conferred potent L-6 myotube (EC50 = 20.4 µm) and muscle tissue (EC50 = 612 µm) glucose uptake effects on vanillic acid. Cytotoxicity evaluation showed that the complex did not reduce the viability of L-6 myotubes and Chang liver cells. CONCLUSIONS: The data suggest that Zn(II)-vanillic acid complex had improved bioactivity relative to vanillic acid. Thus, Zn(II) may be further studied as an antihyperglycaemic and anti-oxidative adjuvant for bioactive phenolic acids.


Assuntos
Antioxidantes/farmacologia , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ácido Vanílico/farmacologia , Zinco/farmacologia , Animais , Complexos de Coordenação , Diabetes Mellitus/metabolismo , Compostos Organometálicos , Ratos Sprague-Dawley
14.
J Food Biochem ; 45(2): e13609, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33458829

RESUMO

In this study, zinc was complexed with p-hydroxybenzoic acid to synthesize a complex with improved pharmacological profile. Proton NMR and FTIR analysis were used to characterize the complex. Several in vitro, cellular and ex vivo antihyperglycemic and antioxidative assays were used to evaluate the potency of the complex, relative to its precursors, while molecular docking was used to investigate interactions with insulin signaling targets (GLUT-4 and PKB). Also, the cytotoxicity of the complex was evaluated in Chang liver cells and L-6 myotubes using MTT assay. Complexation was through a Zn(O4 ) coordination. This afforded the complex two moieties of p-hydroxybenzoic acid, which influenced its activities. While the complex retained the α-glucosidase and α-amylase inhibitory activity of its phenolic acid precursor, complexation increased in vitro and ex vivo antioxidant activity of the phenolic acid by 1.4 to 10.5-folds. Complexation, further, conferred a potent antiglycation activity and L-6 myotube and psoas muscle glucose uptake properties (2.1 to 3.5-folds more than p-hydroxybenzoic acid) on the phenolic acid, without notably inhibiting or reducing the viability of Chang liver cells (IC50  = 5,120 µM) and L-6 myotubes (IC50  = 2,172 µM). Docking studies showed the complex had better interactions with insulin signaling targets (GLUT-4 and PKB) than p-hydrobenzoic acid, which may influence its glucose uptake effects. Data suggest that Zn(II) complexation improved and/or broadened the pharmacological profile of p-hydroxybenzoic acid, thus, may be further studied as a promising adjuvant for phenolic acids. PRACTICAL APPLICATIONS: Most antidiabetic drugs are used as two or more combinations to achieve better efficacy, which may cause drug interaction and increase the risk of side effects associated with these drugs. This study takes advantage of the glycemic control property of zinc and the antioxidant and/or diabetes-related pharmacological properties of p-hydroxybenzoic acid to form a complex with improved and broader antioxidant and antihyperglycemic profile and minimal toxicity concerns. With appropriate further studies, Zn(II)-phenolic acid complexes may be safe nutraceuticals for diabetes and related oxidative complications.


Assuntos
Antioxidantes , Hipoglicemiantes , Antioxidantes/farmacologia , Hidroxibenzoatos/farmacologia , Hipoglicemiantes/farmacologia , Minerais , Simulação de Acoplamento Molecular , Extratos Vegetais , Zinco/farmacologia
15.
Diabetes Metab Syndr Obes ; 12: 1597-1615, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695458

RESUMO

Obesity is the result of genetics which predisposes an individual to obesity and environmental factors, resulting in excessive weight gain. A well-established linear relationship exists between hypertension and obesity. The combined burden of hypertension and obesity poses significant health and economic challenges. Many environmental factors and genetic traits interact to contribute to obesity-linked hypertension. These include excess sodium re-absorption or secretion by the kidneys, a hypertensive shift of renal-pressure and activation of the sympathetic nervous system. Most individuals suffering from hypertension need drugs in order to treat their raised blood pressure, and while a number of antihypertensive therapeutic agents are currently available, 50% of cases remain uncontrolled. In order to develop new and effective therapeutic agents combating obesity-induced hypertension, a thorough understanding of the molecular events leading to adipogenesis is critical. With the advent of whole genome and exome sequencing techniques, new genes and variants which can be used as markers for obesity and hypertension are being identified. This review examines the role played by alternative splicing (AS) as a contributing factor to the metabolic regulation of obesity-induced hypertension. Splicing mutations constitute at least 14% of the disease-causing mutations, thus implicating polymorphisms that effect splicing as indicators of disease susceptibility. The unique transcripts resulting from the alternate splicing of mRNA encoding proteins that play a key role in contributing to obesity would be vital to gain a proper understanding of the genetic causes of obesity. A greater knowledge of the genetic basis for obesity-linked hypertension will assist in the development of appropriate diagnostic tests as well as the identification of new personalized therapeutic targets against obesity-induced hypertension.

16.
BMC Complement Altern Med ; 17(1): 306, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28606081

RESUMO

BACKGROUND: Tuberculosis is counted amongst the most infectious and lethal illnesses worldwide and remains one of the major threats to human health. The aim of the current study was to isolate and characterize anti-mycobacterial compounds present in Curtisia dentata (Burm.f.) C.A.Sm , a medicinal plant reportedly used in the treatment of tuberculosis, stomach ailments and sexually transmitted infections. METHODS: The bioassay guided principle was followed to isolate the anti-mycobacterial compounds. The crude ethanol extracts of the leaves was partitioned with various solvents four compounds such as ß-sitosterol, betulinic acid, ursolic acid and lupeol were successfully isolated. The compounds and their derivatives were evaluated for anti-mycobacterial activity using Microplate Alamar Blue Assay (MABA) against Mycobacterium tuberculosis H37RV (ATCC 27294). Furthermore, the derivatives were investigated for their toxicity against HepG2 and HEK293 using the MTT assay. RESULTS: The methanol fraction had the lowest minimum inhibitory concentration (MIC) of 22.2 µg/ml against the selected Mycobacterium strain when compared to other fractions. Ursolic acid acetate (UAA) was the most active compound with MIC value of 3.4 µg/ml. The derivatives had varying degrees of toxicity, but were generally non-toxic to the selected cell lines. Derivatives also exhibited highest selectivity index and offers a higher safety margin. CONCLUSIONS: The derivatives had better antimicrobial activity and low cytotoxic effects compared to isolated compounds. These increased their selectivity. It appears that acetylation of both betulinic acid and ursolic acid increased their activity against the selected Mycobacterium species. The results obtained in this study gives a clear indication that Curtisia dentata may serve as major source of new alternative medicines that may be used to treat TB. Furthermore, there is a need to explore the activity of these tested plant against other pathogenic Mycobacterium species.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Magnoliopsida/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antibacterianos/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química
17.
Bioorg Med Chem ; 24(19): 4576-4586, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27499368

RESUMO

A series of novel 2,5,7-tricarbo-substituted indoles were prepared via sequential Sonogashira and Suzuki-Miyaura cross-coupling of 2-amino-5-bromo-3-iodoacetophenone with terminal acetylenes and aryl/styrylboronic acids followed by palladium chloride-mediated heteroannulation of the incipient 5-aryl/styryl-substituted 2-amino-3-(arylalkynyl)acetophenones. These polycarbo-substituted indole derivatives were evaluated for potential in vitro antiproliferative activity against the human breast adenocarcinoma (MCF-7) and human cervical cancer (HeLa) cell lines. Compounds 6f, 6i, 6k, 6m and 6n were found to exhibit significant cytotoxicity and selectivity against the HeLa cells. Compounds 6i and 6m were chosen as representative examples to evaluate their pro-apoptotic efficacy against the HeLa cell line. The compounds induced apoptosis through cell membrane alteration and DNA fragmentation caspase-dependent pathways.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Indóis/química , Indóis/farmacologia , Acetofenonas/síntese química , Acetofenonas/química , Acetofenonas/farmacologia , Aminação , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Feminino , Halogenação , Células HeLa , Humanos , Indóis/síntese química , Células MCF-7 , Neoplasias do Colo do Útero/tratamento farmacológico
18.
Nat Prod Commun ; 7(12): 1601-4, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23413563

RESUMO

The acetone extract of Ochna pretoriensis was evaluated for antibacterial activity using bioautography and serial microplate dilution methods against four nosocomial bacterial pathogens namely: Escherichia coli, Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa. A bioassay-guided fractionation of the crude extract led to the isolation of two antibacterial biflavonoids, ochnaflavone and ochnaflavone 7-O-methyl ether. Gram-negative bacteria were more sensitive to the isolated compounds than the Gram-positive bacteria (MIC values: 31.3 microg/mL for P. aeruginosa and 62.5 microg/mL for S. aureus). In addition, the isolated compounds were assessed for their potential toxic effects in the MTT toxicity assay using monkey kidney vero cells and Ames genotoxicity test using Salmonella typhimurium strain TA98. LC50 values were 125.9 microg/mL for ochnaflavone and 162.0/microg/mL for ochnaflavone 7-O-methyl ether. The isolated compounds have selectivity index values ranging from 1.29 to 4.03. Selectivity index values higher than one indicate that test samples are less toxic to the host cells than to the pathogens. The biflavonoids did not have any mutagenic effects in the Salmonella/microsome assay without metabolic activation.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Ochnaceae/química , Animais , Bactérias/efeitos dos fármacos , Chlorocebus aethiops , Corantes , Ensaios de Seleção de Medicamentos Antitumorais , Flavonoides/toxicidade , Humanos , Testes de Sensibilidade Microbiana , Mutagênicos/toxicidade , Extratos Vegetais/química , Folhas de Planta/química , Ratos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Sais de Tetrazólio , Tiazóis , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...