Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 146(15): 154103, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28433037

RESUMO

The motion of a spherical Brownian particle in an asymmetric periodic channel is considered. Under an external periodic stimulus, the particle switches between two states with different particle radius, every half-period. Using Brownian dynamics simulations, we show that the particle size oscillation, combined with the asymmetry of the channel, induces a drift along the channel axis, directed towards the steeper wall of the channel. The oscillation of the particle size is accompanied by a time variation of the space accessible to the particle and by an oscillation of its diffusion coefficient. The former underlies the drift inducing mechanism of purely entropic nature. The latter, combined with the former, leads to a significant amplification of the effect. The drift velocity vanishes when interconversion between the states occurs either very slow or very fast, having a maximum in between. The position and magnitude of the maximum are discussed by providing an analytical approach based on intuitively appealing assumptions.

2.
J Chem Phys ; 143(17): 174102, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26547153

RESUMO

This paper is devoted to particle transport in a tube formed by alternating wide and narrow sections, in the presence of an external biasing force. The focus is on the effective transport coefficients--mobility and diffusivity, as functions of the biasing force and the geometric parameters of the tube. Dependences of the effective mobility and diffusivity on the tube geometric parameters are known in the limiting cases of no bias and strong bias. The approximations used to obtain these results are inapplicable at intermediate values of the biasing force. To bridge the two limits Brownian dynamics simulations were run to determine the transport coefficients at intermediate values of the force. The simulations were performed for a representative set of tube geometries over a wide range of the biasing force. They revealed that there is a range of the narrow section length, where the force dependence of the mobility has a maximum. In contrast, the diffusivity is a monotonically increasing function of the force. A simple formula is proposed, which reduces to the known dependences of the diffusivity on the tube geometric parameters in both limits of zero and strong bias. At intermediate values of the biasing force, the formula catches the diffusivity dependence on the narrow section length, if the radius of these sections is not too small.

3.
Artigo em Inglês | MEDLINE | ID: mdl-26764657

RESUMO

We generalize a theory of diffusion of a massive particle by the way in which transport characteristics are described by analytical expressions that formally coincide with those for the overdamped massless case but contain a factor comprising the particle mass which can be calculated in terms of Risken's matrix continued fraction method (MCFM). Using this generalization, we aim to elucidate how large gradients of a periodic potential affect the current in a tilted periodic potential and the average current of adiabatically driven on-off flashing ratchets. For this reason, we perform calculations for a sawtooth potential of the period L with an arbitrary sawtooth length (l

4.
J Chem Phys ; 141(21): 214103, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25481125

RESUMO

This paper is devoted to the effective transport coefficients of a particle in a tube of alternating diameter. Analytical expressions are derived for the effective mobility and diffusivity under strong bias conditions, i.e., in the limiting case where the external biasing force tends to infinity. The expressions give the transport coefficients as functions of the geometric parameters of the tube and the external force. They show that the effective diffusivity is a linear function of the square of the external force, whereas the effective mobility is independent of the force. The problem of finding effective transport coefficients in a tube of alternating diameter is too complex to be analyzed by conventional methods. Therefore, the expressions are derived in the framework of an intuition-based approach and validated by Brownian dynamics simulations. The obtained results extend a short list of available analytical expressions for the effective transport coefficients.


Assuntos
Difusão , Algoritmos , Movimento (Física) , Tamanho da Partícula
5.
Artigo em Inglês | MEDLINE | ID: mdl-25353763

RESUMO

We study analytically the effect of a small inertial correction on the properties of adiabatically driven flashing ratchets. Parrondo's lemma [J. M. R. Parrondo, Phys. Rev. E 57, 7297 (1998)] is generalized to include the inertial term so as to establish the symmetry conditions allowing directed motion (other than in the overdamped massless case) and to obtain a high-temperature expansion of the motion velocity for arbitrary potential profiles. The inertial correction is thus shown to enhance the ratchet effect at all temperatures for sawtooth potentials and at high temperatures for simple potentials described by the first two harmonics. With the special choice of potentials represented by at least the first three harmonics, the correction gives rise to the motion reversal in the high-temperature region. In the low-temperature region, inertia weakens the ratchet effect, with the exception of the on-off model, where diffusion is important. The directed motion adiabatically driven by potential sign fluctuations, though forbidden in the overdamped limit, becomes possible due to purely inertial effects in neither symmetric nor antisymmetric potentials, i.e., not for commonly used sawtooth and two-sinusoid profiles.

6.
J Chem Phys ; 140(21): 214108, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24907991

RESUMO

We consider a system of two coupled particles fluctuating between two states, with different interparticle interaction potentials and particle friction coefficients. An external action drives the interstate transitions that induces reciprocating motion along the internal coordinate x (the interparticle distance). The system moves unidirectionally due to rectification of the internal motion by asymmetric friction fluctuations and thus operates as a dimeric motor that converts input energy into net movement. We focus on how the law of interaction between the particles affects the dimer transport and, in particular, the role of thermal noise in the motion inducing mechanism. It is argued that if the interaction potential behaves at large distances as x(α), depending on the value of the exponent α, the thermal noise plays a constructive (α > 2), neutral (α = 2), or destructive (α < 2) role. In the case of α = 1, corresponding piecewise linear potential profiles, an exact solution is obtained and discussed in detail.


Assuntos
Transferência de Energia , Fricção , Soluções/química , Difusão , Movimento (Física)
7.
Artigo em Inglês | MEDLINE | ID: mdl-24329385

RESUMO

Diffusion in a tube of periodically varying diameter occurs slower than that in a cylindrical tube because diffusing particles get trapped in wells of the periodic entropy potential which is due to variation of the tube cross-section area. To quantify the slowdown one has to establish a relation between the effective diffusion coefficient of the particle and the tube geometry, which is a very complicated problem. Here we show how to overcome the difficulties in the case of a periodically expanded conical tube, where we find an approximate solution for the effective diffusion coefficient as a function of the parameters determining the tube geometry.

8.
Artigo em Inglês | MEDLINE | ID: mdl-23944411

RESUMO

We investigate a Brownian pump which, being powered by a flashing ratchet mechanism, produces net particle transport through a membrane. The extension of the Parrondo's approach developed for reversible Brownian motors [Parrondo, Phys. Rev. E 57, 7297 (1998)] to adiabatically driven pumps is given. We demonstrate that the pumping mechanism becomes especially efficient when the time variation of the potential occurs adiabatically fast or adiabatically slow, in perfect analogy with adiabatically driven Brownian motors which exhibit high efficiency [Rozenbaum et al., Phys. Rev. E 85, 041116 (2012)]. At the same time, the efficiency of the pumping mechanism is shown to be less than that of Brownian motors due to fluctuations of the number of particles in the membrane.


Assuntos
Modelos Teóricos , Movimento (Física)
9.
J Chem Phys ; 136(21): 214110, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22697533

RESUMO

We investigate transport of point Brownian particles in a tube formed by identical periodic compartments of varying diameter, focusing on the effects due to the compartment asymmetry. The paper contains two parts. First, we study the force-dependent mobility of the particle. The mobility is a symmetric non-monotonic function of the driving force, F, when the compartment is symmetric. Compartment asymmetry gives rise to an asymmetric force-dependent mobility, which remains non-monotonic when the compartment asymmetry is not too high. The F-dependence of the mobility becomes monotonic in tubes formed by highly asymmetric compartments. The transition of the F-dependence of the mobility from non-monotonic to monotonic behavior results in important consequences for the particle motion under the action of a time-periodic force with zero mean, which are discussed in the second part of the paper: In a tube formed by moderately asymmetric compartments, the particle under the action of such a force moves with an effective drift velocity that vanishes at small and large values of the force amplitude having a maximum in between. In a tube formed by highly asymmetric compartments, the effective drift velocity monotonically increases with the amplitude of the driving force and becomes unboundedly large as the amplitude tends to infinity.


Assuntos
Entropia
10.
J Chem Phys ; 134(10): 101102, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21405148

RESUMO

Using Brownian dynamics simulations, we study the effective mobility and diffusion coefficient of a point particle in a tube formed from identical compartments of varying diameter, as functions of the driving force applied along the tube axis. Our primary focus is on how the driving force dependences of these transport coefficients are modified by the changes in the compartment shape. In addition to monotonically increasing or decreasing behavior of the effective mobility in periodic entropy potentials reported earlier, we now show that the effective mobility can even be nonmonotonic in the driving force.


Assuntos
Simulação de Dinâmica Molecular , Difusão , Entropia , Tamanho da Partícula
11.
J Chem Phys ; 132(22): 221104, 2010 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-20550383

RESUMO

We show that the effect of driving force F on the effective mobility and diffusion coefficient of a particle in a tube formed by identical compartments may be qualitatively different depending on the compartment shape. In tubes formed by cylindrical (spherical) compartments the mobility monotonically decreases (increases) with F and the diffusion coefficient diverges (remains finite) as F tends to infinity. In tubes formed by cylindrical compartments, at large F there is intermittency in the particle transitions between openings connecting neighboring compartments.


Assuntos
Difusão , Movimento (Física) , Entropia , Modelos Moleculares
12.
J Chem Phys ; 130(16): 164101, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19405555

RESUMO

We consider a system of two coupled Brownian particles fluctuating between two states. The fluctuations are produced by both equilibrium thermal and external nonthermal noise, the transition rates depending on the interparticle distance. An externally induced modulation of the transition rates acts on the internal degree of freedom (the interparticle distance) and generates reciprocating motion along this coordinate. The system moves unidirectionally due to rectification of the internal motion by asymmetric friction fluctuations and thus operates as a dimeric motor that converts input energy into net movement. The properties of the motor are primarily determined by the properties of the reciprocating engine, represented by the interparticle distance dynamics. Two main mechanisms are recognized by which the engine operates: energetic and informational. In the physically important cases where only one of the motion-inducing mechanisms is operative, exact solutions can be found for the model with linearly coupled particles. We focus on the informational mechanism, in which thermal noise is involved as a vital component and the reciprocating velocity exhibits a rich behavior as a function of the model parameters. An efficient rectification method for the reciprocating motion is also discussed.

13.
J Chem Phys ; 129(18): 184706, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19045422

RESUMO

Diffusion of a spherical particle of radius r in a tube with identical periodic dead ends is analyzed. It is shown that the effective diffusion constant follows the Stokes-Einstein relation, D(eff)(r) proportional to 1r, only when r is larger or much smaller than the radius of the dead end entrance. In between, D(eff)(r) not only deviates from the 1r behavior but may also even become a nonmonotonic function, which increases with the particle radius for a certain range of r.


Assuntos
Difusão , Modelos Químicos , Tamanho da Partícula
14.
J Chem Phys ; 127(22): 224712, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-18081419

RESUMO

A particle diffusing in a tube with dead ends, from time to time enters a dead end, spends some time in the dead end, and then comes back to the tube. As a result, the particle spends in the tube only a part of the entire observation time that leads to slowdown of its diffusion along the tube. We study the transient diffusion in a tube with periodic identical dead ends formed by cavities of volume V(cav) connected to the tube by cylindrical channels of length L and radius a, which is assumed to be much smaller than the tube radius R and the distance l between neighboring dead ends. Assuming that the particle initial position is uniformly distributed over the tube, we analyze the monotonic decrease of the particle diffusion coefficient D(t) from its initial value D(0)=D, which characterizes diffusion in the tube without dead ends, to its asymptotic long-time value D(infinity)=D(eff)

Assuntos
Difusão , Microfluídica/métodos , Modelos Químicos , Nanotubos/química , Nanotubos/ultraestrutura , Soluções/química , Simulação por Computador
15.
J Chem Phys ; 125(19): 194501, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17129117

RESUMO

To escape from a cavity through a small window the particle has to overcome a high entropy barrier to find the exit. As a consequence, its survival probability in the cavity decays as a single exponential and is characterized by the only parameter, the rate constant. We use simulations to study escape of Langevin particles from a cubic cavity through a small round window in the center of one of the cavity walls with the goal of analyzing the friction dependence of the escape rate. We find that the rate constant shows the turnover behavior as a function of the friction constant, zeta: The rate constant grows at very small zeta, reaches a maximum value which is given by the transition-state theory (TST), and then decreases approaching zero as zeta-->infinity. Based on the results found in simulations and some general arguments we suggest a formula for the rate constant that predicts a turnover of the escape rate for ergodic cavities in which collisions of the particle with the cavity walls are defocusing. At intermediate-to-high friction the formula describes transition between two known results for the rate constant: the TST estimation and the high friction limiting behavior that characterizes escape of diffusing particles. In this range of friction the rate constants predicted by the formula are in good agreement with those found in simulations. At very low friction the rate constants found in simulations are noticeably smaller than those predicted by the formula. This happens because the simulations were run in the cubic cavity which is not ergodic.


Assuntos
Fricção , Cinética , Fenômenos Biofísicos , Biofísica , Simulação por Computador , Modelos Estatísticos , Termodinâmica
16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(4 Pt 1): 041105, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16711785

RESUMO

Stochastic acceleration, defined in terms of a stochastic equation of motion for the acceleration, is derived from a Hamiltonian model. A free particle is coupled bilinearly to a harmonic bath through the particle's momentum and coordinate. Under appropriate conditions, momentum coupling induces velocity diffusion which is not destroyed by the spatial coupling. Spatial-momentum coupling may induce spatial subdiffusion. The thermodynamic equilibrium theory presented in this paper does not violate the second law of thermodynamics, although the average velocity squared of the particle may increase in time without bound.

18.
J Chem Phys ; 121(22): 11390-4, 2004 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-15634098

RESUMO

We analyze trapping of diffusing particles by nonoverlapping partially absorbing disks randomly located on a reflecting surface, the problem that arises in many branches of chemical and biological physics. We approach the problem by replacing the heterogeneous boundary condition on the patchy surface by the homogenized partially absorbing boundary condition, which is uniform over the surface. The latter can be used to analyze any problem (internal and external, steady state, and time dependent) in which diffusing particles are trapped by the surface. Our main result is an expression for the effective trapping rate of the homogenized boundary as a function of the fraction of the surface covered by the disks, the disk radius and trapping efficiency, and the particle diffusion constant. We demonstrate excellent accuracy of this expression by testing it against the results of Brownian dynamics simulations. (c) 2004 American Institute of Physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...