Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 19: 4931-4940, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527197

RESUMO

Microsatellite instability (MSI), a phenotype displayed as deletions/insertions of repetitive genomic sequences, has drawn great attention due to its application in cancer including diagnosis, prognosis and immunotherapy response prediction. Several methods have been developed for the detection of MSI, facilitating the MSI classification of cancer patients. In view of recent interest in minimally-invasive detection of MSI via liquid biopsy samples, which requires methods with high sensitivity to identify small fractions of altered DNA in the presence of large amount of wild type copies, sensitive MSI detection approaches are emerging. Here we review the available MSI detection methods and their detection limits and focus on recently developed next-generation-sequencing based approaches and bioinformatics algorithms available for MSI analysis in various cancer types.

2.
Nucleic Acids Res ; 49(4): e24, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33290560

RESUMO

Sensitive detection of microsatellite instability (MSI) in tissue or liquid biopsies using next generation sequencing (NGS) has growing prognostic and predictive applications in cancer. However, the complexities of NGS make it cumbersome as compared to established multiplex-PCR detection of MSI. We present a new approach to detect MSI using inter-Alu-PCR followed by targeted NGS, that combines the practical advantages of multiplexed-PCR with the breadth of information provided by NGS. Inter-Alu-PCR employs poly-adenine repeats of variable length present in every Alu element and provides a massively-parallel, rapid approach to capture poly-A-rich genomic fractions within short 80-150bp amplicons generated from adjacent Alu-sequences. A custom-made software analysis tool, MSI-tracer, enables Alu-associated MSI detection from tissue biopsies or MSI-tracing at low-levels in circulating-DNA. MSI-associated indels at somatic-indel frequencies of 0.05-1.5% can be detected depending on the availability of matching normal tissue and the extent of instability. Due to the high Alu copy-number in human genomes, a single inter-Alu-PCR retrieves enough information for identification of MSI-associated-indels from ∼100 pg circulating-DNA, reducing current limits by ∼2-orders of magnitude and equivalent to circulating-DNA obtained from finger-sticks. The combined practical and informational advantages of inter-Alu-PCR make it a powerful tool for identifying tissue-MSI-status or tracing MSI-associated-indels in liquid biopsies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Instabilidade de Microssatélites , Reação em Cadeia da Polimerase Multiplex/métodos , Análise de Sequência de DNA/métodos , Elementos Alu , Linhagem Celular , Humanos , Limite de Detecção
3.
Nucleic Acids Res ; 44(19): e146, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27431322

RESUMO

Presence of excess unaltered, wild-type (WT) DNA providing no information of biological or clinical value often masks rare alterations containing diagnostic or therapeutic clues in cancer, prenatal diagnosis, infectious diseases or organ transplantation. With the surge of high-throughput technologies there is a growing demand for removing unaltered DNA over large pools-of-sequences. Here we present nuclease-assisted minor-allele enrichment with probe-overlap (NaME-PrO), a single-step approach with broad genome coverage that can remove WT-DNA from numerous sequences simultaneously, prior to genomic analysis. NaME-PrO employs a double-strand-DNA-specific nuclease and overlapping oligonucleotide-probes interrogating WT-DNA targets and guiding nuclease digestion to these sites. Mutation-containing DNA creates probe-DNA mismatches that inhibit digestion, thus subsequent DNA-amplification magnifies DNA-alterations at all selected targets. We demonstrate several-hundred-fold mutation enrichment in diverse human samples on multiple clinically relevant targets including tumor samples and circulating DNA in 50-plex reactions. Enrichment enables routine mutation detection at 0.01% abundance while by adjusting conditions it is possible to sequence mutations down to 0.00003% abundance, or to scan tumor-suppressor genes for rare mutations. NaME-PrO introduces a simple and highly parallel process to remove un-informative DNA sequences and unmask clinically and biologically useful alterations.


Assuntos
Alelos , Análise Mutacional de DNA , DNA/genética , DNA/metabolismo , Endonucleases/metabolismo , Mutação , Análise Mutacional de DNA/métodos , Análise Mutacional de DNA/normas , Humanos , Masculino , Sondas de Oligonucleotídeos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...