Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 31(Pt 3): 516-9, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12773147

RESUMO

The catalytic schemes of a variety of haem enzymes, including the P450 mono-oxygenases, consist of a number of common reactive haem-oxygen adducts. The characterization of these intermediates by optical and EPR spectroscopies has reinforced the similarity of these intermediate states in a number of haem enzyme systems. Furthermore, the reactivity of these states in P450 and horseradish peroxidase, in which multiple potent oxidants are formed, provides a paradigm for many other haem enzymes.


Assuntos
Heme/metabolismo , Oxigênio/metabolismo , Catálise , Cinética , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/metabolismo , Esteroide 21-Hidroxilase/metabolismo
2.
J Am Chem Soc ; 123(7): 1403-15, 2001 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-11456714

RESUMO

We have employed gamma-irradiation at cryogenic temperatures (77 K and also approximately 6 K) of the ternary complexes of camphor, dioxygen, and ferro-cytochrome P450cam to inject the "second" electron of the catalytic process. We have used EPR and ENDOR spectroscopies to characterize the primary product of reduction as well as subsequent states created by annealing reduced oxyP450, both the WT enzyme and the D251N and T252A mutants, at progressively higher temperatures. (i) The primary product upon reduction of oxyP450 4 is the end-on, "H-bonded peroxo" intermediate 5A. (ii) This converts even at cryogenic temperatures to the hydroperoxo-ferriheme species, 5B, in a step that is sensitive to these mutations. Yields of 5B are as high as 40%. (iii) In WT and D251N P450s, brief annealing in a narrow temperature range around 200 K causes 5B to convert to a product state, 7A, in which the product 5-exo-hydroxycamphor is coordinated to the ferriheme in a nonequilibrium configuration. Chemical and EPR quantitations indicate the reaction pathway involving 5B yields 5-exo-hydroxycamphor quantitatively. Analogous (but less extensive) results are seen for the alternate substrate, adamantane. (iv) Although the T252A mutation does not interfere with the formation of 5B, the cryoreduced oxyT252A does not yield product, which suggests that 5B is a key intermediate at or near the branch-point that leads either to product formation or to nonproductive "uncoupling" and H(2)O(2) production. The D251N mutation appears to perturb multiple stages in the catalytic cycle. (v) There is no spectroscopic evidence for the buildup of a high-valence oxyferryl/porphyrin pi-cation radical intermediate, 6. However, ENDOR spectroscopy of 7A in H(2)O and D(2)O buffers shows that 7A contains hydroxycamphor, rather than water, bound to Fe(3+), and that the proton removed from the C(5) carbon of substrate during hydroxylation is trapped as the hydroxyl proton. This demonstrates that hydroxylation of substrates by P450cam in fact occurs by the formation and reaction of 6. (vi) Annealing at > or = 220 K converts the initial product state 7A to the equilibrium product state 7, with the transition occurring via a second nonequilibrium product state, 7B, in the D251N mutant; in states 7B and 7 the hydroxycamphor hydroxyl proton no longer is trapped. (vii) The present results are discussed in the context of other efforts to detect intermediates in the P450 catalytic cycle.


Assuntos
Cânfora 5-Mono-Oxigenase/metabolismo , Cânfora/metabolismo , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Congelamento , Hidroxilação
3.
J Biol Chem ; 276(15): 11648-52, 2001 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-11152470

RESUMO

Unstable reaction intermediates of the cytochrome P450 catalytic cycle have been prepared at cryogenic temperatures using radiolytic one-electron reduction of the oxy-P450 CYP101 complex. Since a rate-limiting step in the catalytic cycle of the enzyme is the reduction of the ferrous oxygenated heme protein, subsequent reaction intermediates do not normally accumulate. Using (60)Co gamma-irradiation, the primary reduced oxy-P450 species at 77 K has been identified as a superoxo- or hydroperoxo-Fe(3+)-heme complex (Davydov, R., Macdonald, I. D. G., Makris, T. M., Sligar, S. G., and Hoffman, B. M. (1999) J. Am. Chem. Soc. 121, 10654-10655). The electronic absorption spectroscopy is an essential tool to characterize cytochrome P450 intermediates and complements paramagnetic methods, which are blind to important diamagnetic or antiferromagnetically coupled states. We report a method of trapping unstable states of redox enzymes using phosphorus-32 as an internal source of electrons. We determine the UV-visible optical spectra of the reduced oxygenated state of CYP101 and show that the primary intermediate, a hydroperoxo-P450, is stable below 180 K and converts smoothly to the product complex at approximately 195 K. In the course of the thermal annealing, no spectral changes indicating the presence of oxoferryl species (the so-called compound I type spectrum) was observed.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Radioisótopos de Fósforo , Radioquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...