Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Internet Res ; 21(11): e13371, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31702558

RESUMO

BACKGROUND: Patient online drug reviews are a resource for other patients seeking information about the practical benefits and drawbacks of drug therapies. Patient reviews may also serve as a source of postmarketing safety data that are more user-friendly than regulatory databases. However, the reliability of online reviews has been questioned, because they do not undergo professional review and lack means of verification. OBJECTIVE: We evaluated online reviews of hypnotic medications, because they are commonly used and their therapeutic efficacy is particularly amenable to patient self-evaluation. Our primary objective was to compare the types and frequencies of adverse events reported to the Food and Drug Administration Adverse Event Reporting System (FAERS) with analogous information in patient reviews on the consumer health website Drugs.com. The secondary objectives were to describe patient reports of efficacy and adverse events and assess the influence of medication cost, effectiveness, and adverse events on user ratings of hypnotic medications. METHODS: Patient ratings and narratives were retrieved from 1407 reviews on Drugs.com between February 2007 and March 2018 for eszopiclone, ramelteon, suvorexant, zaleplon, and zolpidem. Reviews were coded to preferred terms in the Medical Dictionary for Regulatory Activities. These reviews were compared to 5916 cases in the FAERS database from January 2015 to September 2017. RESULTS: Similar adverse events were reported to both Drugs.com and FAERS. Both resources identified a lack of efficacy as a common complaint for all five drugs. Both resources revealed that amnesia commonly occurs with eszopiclone, zaleplon, and zolpidem, while nightmares commonly occur with suvorexant. Compared to FAERS, online reviews of zolpidem reported a much higher frequency of amnesia and partial sleep activities. User ratings were highest for zolpidem and lowest for suvorexant. Statistical analyses showed that patient ratings are influenced by considerations of efficacy and adverse events, while drug cost is unimportant. CONCLUSIONS: For hypnotic medications, online patient reviews and FAERS emphasized similar adverse events. Online reviewers rated drugs based on perception of efficacy and adverse events. We conclude that online patient reviews of hypnotics are a valid source that can supplement traditional adverse event reporting systems.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Medidas de Resultados Relatados pelo Paciente , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Bases de Dados Factuais , Humanos , Internet , Reprodutibilidade dos Testes
2.
Biometals ; 32(6): 951-964, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31754889

RESUMO

The understanding of cellular Cd2+ accumulation and toxicity is hampered by a lack of fluorescent indicators selective for intracellular free Cd2+ ([Cd2+]i). In this study, we used depolarized MIN6 mouse pancreatic beta cells as a model for evaluating [Cd2+]i detection with commercially available fluorescent probes, most of which have been traditionally used to visualize [Ca2+]i and [Zn2+]i. We trialed a panel of 12 probes including fura-2, FluoZin-3, Leadmium Green, Rhod-5N, indo-1, Fluo-5N, and others. We found that the [Zn2+]i probe FluoZin-3 and the traditional [Ca2+]i probe fura-2 responded most consistently and robustly to [Cd2+]i accumulation mediated by voltage-gated calcium channels. While selective detection of [Cd2+]i by fura-2 required the omission of Ca2+ from extracellular buffers, FluoZin-3 responded to [Cd2+]i similarly in the presence or absence of extracellular Ca2+. Furthermore, we showed that FluoZin-3 and fura-2 can be used together for simultaneous monitoring of [Ca2+]i and [Cd2+]i in the same cells. None of the other fluorophores tested were effective [Cd2+]i detectors in this model.


Assuntos
Cádmio/análise , Corantes Fluorescentes/análise , Fura-2/análise , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Compostos Policíclicos/análise , Animais , Cádmio/metabolismo , Linhagem Celular , Corantes Fluorescentes/química , Fura-2/química , Espectrometria de Massas , Camundongos , Microscopia de Fluorescência , Compostos Policíclicos/química
3.
Mol Cell Endocrinol ; 478: 1-9, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29959979

RESUMO

A previous body of work in bovine and rodent models shows that cholinergic agonists modulate the secretion of steroid hormones from the adrenal cortex. In this study we used live-cell Ca2+ imaging to investigate cholinergic activity in the HAC15 human adrenocortical carcinoma cell line. The cholinergic agonists carbachol and acetylcholine triggered heterogeneous Ca2+ oscillations that were strongly inhibited by antagonists with high affinity for the M3 muscarinic receptor subtype, while preferential block of M1 or M2 receptors was less effective. Acute exposure to carbachol and acetylcholine modestly elevated aldosterone secretion in HAC15 cells, and this effect was also diminished by M3 inhibition. HAC15 cells expressed relatively high levels of mRNA for M3 and M2 receptors, while M1 and M5 mRNA were much lower. In conclusion, our data extend previous findings in non-human systems to implicate the M3 receptor as the dominant muscarinic receptor in the human adrenal cortex.


Assuntos
Córtex Suprarrenal/citologia , Aldosterona/biossíntese , Sinalização do Cálcio , Receptor Muscarínico M3/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Fluorescência , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Muscarínico M3/antagonistas & inibidores , Receptor Muscarínico M3/genética
4.
Biometals ; 29(4): 625-35, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27260023

RESUMO

Leadmium Green is a commercially available, small molecule, fluorescent probe advertised as a detector of free intracellular cadmium (Cd(2+)) and lead (Pb(2+)). Leadmium Green has been used in various paradigms, such as tracking Cd(2+) sequestration in plant cells, heavy metal export in protozoa, and Pb(2+) absorption by vascular endothelial cells. However very little information is available regarding its affinity and selectivity for Cd(2+), Pb(2+), and other metals. We evaluated the in vitro selectivity of Leadmium Green using spectrofluorimetry. Consistent with manufacturer's claims, Leadmium Green was sensitive to Cd(2+) (KD ~600 nM) and also Pb(2+) (KD ~9.0 nM) in a concentration-dependent manner, and furthermore proved insensitive to Ca(2+), Co(2+), Mn(2+) and Ni(2+). Leadmium Green also responded to Zn(2+) with a KD of ~82 nM. Using fluorescence microscopy, we evaluated Leadmium Green in live mouse hippocampal HT22 cells. We demonstrated that Leadmium Green detected ionophore-mediated acute elevations of Cd(2+) or Zn(2+) in a concentration-dependent manner. However, the maximum fluorescence produced by ionophore-delivered Zn(2+) was much less than that produced by Cd(2+). When tested in a model of oxidant-induced liberation of endogenous Zn(2+), Leadmium Green responded weakly. We conclude that Leadmium Green is an effective probe for monitoring intracellular Cd(2+), particularly in models where Cd(2+) accumulates rapidly, and when concomitant fluctuations of intracellular Zn(2+) are minimal.


Assuntos
Cádmio/análise , Fluorescência , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Animais , Células Cultivadas , Camundongos , Microscopia Confocal , Espectrometria de Fluorescência , Zinco/análise
5.
Cell Calcium ; 45(5): 447-55, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19349076

RESUMO

Intracellular Zn(2+) toxicity is associated with mitochondrial dysfunction. Zn(2+) depolarizes mitochondria in assays using isolated organelles as well as cultured cells. Some reports suggest that Zn(2+)-induced depolarization results from the opening of the mitochondrial permeability transition pore (mPTP). For a more detailed analysis of this relationship, we compared Zn(2+)-induced depolarization with the effects of Ca(2+) in single isolated rat liver mitochondria monitored with the potentiometric probe rhodamine 123. Consistent with previous work, we found that relatively low levels of Ca(2+) caused rapid, complete and irreversible loss of mitochondrial membrane potential, an effect that was diminished by classic inhibitors of mPT, including high Mg(2+), ADP and cyclosporine A. Zn(2+) also depolarized mitochondria, but only at relatively high concentrations. Furthermore Zn(2+)-induced depolarization was slower, partial and sometimes reversible, and was not affected by inhibitors of mPT. We also compared the effects of Ca(2+) and Zn(2+) in a calcein-retention assay. Consistent with the well-documented ability of Ca(2+) to induce mPT, we found that it caused rapid and substantial loss of matrix calcein. In contrast, calcein remained in Zn(2+)-treated mitochondria. Considered together, our results suggest that Ca(2+) and Zn(2+) depolarize mitochondria by considerably different mechanisms, that opening of the mPTP is not a direct consequence of Zn(2+)-induced depolarization, and that Zn(2+) is not a particularly potent mitochondrial inhibitor.


Assuntos
Cálcio/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Zinco/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Ciclosporina/farmacologia , Inibidores Enzimáticos/farmacologia , Fluoresceínas/metabolismo , Corantes Fluorescentes/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Permeabilidade , Ratos , Ratos Sprague-Dawley , Rodamina 123/metabolismo , Rutênio Vermelho/metabolismo
6.
J Neurosci ; 25(41): 9507-14, 2005 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-16221861

RESUMO

Mitochondria have been identified as targets of the neurotoxic actions of zinc, possibly through decreased mitochondrial energy production and increased reactive oxygen species accumulation. It has been hypothesized that impairment of mitochondrial trafficking may be a mechanism of neuronal injury. Here, we report that elevated intraneuronal zinc impairs mitochondrial trafficking. At concentrations just sufficient to cause injury, zinc rapidly inhibited mitochondrial movement without altering morphology. Zinc chelation initially restored movement, but the actions of zinc became insensitive to chelator in <10 min. A search for downstream signaling events revealed that inhibitors of phosphatidylinositol (PI) 3-kinase prevented this zinc effect on movement. Moreover, transient inhibition of PI 3-kinase afforded neuroprotection against zinc-mediated toxicity. These data illustrate a novel mechanism that regulates mitochondrial trafficking in neurons and also suggest that mitochondrial trafficking may be closely coupled to neuronal viability.


Assuntos
Ativação Enzimática/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Zinco/farmacologia , Animais , Cátions Bivalentes , Células Cultivadas , Cloretos/farmacologia , Cloretos/fisiologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Ratos , Ratos Sprague-Dawley , Zinco/fisiologia , Compostos de Zinco/farmacologia
7.
J Neurochem ; 93(5): 1242-50, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15934944

RESUMO

Current evidence suggests that zinc kills neurons by disrupting energy production, specifically by inhibiting mitochondrial function. However it is unclear if the inhibitory effect requires zinc accumulation, and if so, precisely how zinc enters mitochondria. Here, using fluorescence microscopy to visualize individual rat brain mitochondria, we detected matrix zinc uptake using the fluorophore FluoZin-3. Fluorescence increased rapidly in mitochondria treated with micromolar free zinc, and was quickly returned to baseline by membrane permeant chelation. Zinc uptake occurred through the calcium uniporter, because depolarization or uniporter blockade reduced fluorescence changes. However, increased fluorescence under these conditions suggests that zinc can enter through a uniporter-independent pathway. Fluorescence steadily declined over time and was unaffected by acidification or phosphate depletion, suggesting that zinc precipitation is not a mechanism for reducing matrix zinc. Uniporter blockade with ruthenium red also did not change the rate of zinc loss. Instead, zinc appears to exit the matrix through a novel efflux pathway not yet identified. Interestingly, dye-loaded mitochondria showed no fluorescence increase after treatment with strong oxidants, arguing against oxidant-labile intra-mitochondrial zinc pools. This study is the first to directly demonstrate zinc accumulation in individual mitochondria and provides insight about mechanisms mediating mitochondrial zinc uptake and efflux.


Assuntos
Encéfalo/metabolismo , Mitocôndrias/metabolismo , Zinco/farmacocinética , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Cálcio/farmacologia , Eletrofisiologia , Fluorescência , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência , Mitocôndrias/fisiologia , Concentração Osmolar , Oxidantes/farmacologia , Fosfatos/metabolismo , Compostos Policíclicos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Zinco/antagonistas & inibidores
8.
J Bioenerg Biomembr ; 36(4): 283-6, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15377858

RESUMO

Mitochondria are the proximate target of a number of different neurotoxins. Typically, impairing of the key bioenergetic function of mitochondria by toxins is considered as the main mechanism of action. However, the effective maintenance of energy generation in neurons depends on the biogenesis, trafficking, and degradation of mitochondria in addition to the traditional bioenergetic functions. We have recently demonstrated that glutamate alters both the trafficking and morphology of mitochondria in primary neurons. In addition, several other potential neurotoxins, including nitric oxide and zinc, inhibit mitochondrial movement and, in some cases, alter morphology too. This suggests that some part of the action of neurotoxins might include the impairment of mitochondrial trafficking in neurons, with the resultant failure of local ATP delivery.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurotoxinas/toxicidade , Transporte Proteico/efeitos dos fármacos , Animais , Humanos , Mitocôndrias/ultraestrutura , Doenças Neurodegenerativas/patologia , Neurônios/patologia
9.
Glia ; 45(4): 346-53, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14966866

RESUMO

Excessive accumulation of the heavy metal zinc is cytotoxic. As a consequence, cellular vulnerability to zinc-induced injury may be regulated by the abundance of proteins that maintain intracellular free zinc concentrations ([Zn2+]i). In this study, we overexpressed the zinc-binding protein metallothionein-II (MT) in astrocytes to assess its impact as (1) an acute zinc buffering mechanism, and (2) an oxidant-releasable zinc pool. Overexpression of MT in primary astrocyte cultures was accomplished using an adenoviral vector. Using the zinc-sensitive fluorescent indicator mag-fura-2, we monitored [Zn2+]i after stimulating zinc influx or oxidant treatment. With MT overexpression, we observed an acute buffering effect manifested as a dampening of stimulus-induced increases in [Zn2+]i. In contrast, we also saw enhanced zinc release with application of the sulfhydryl oxidizing agent 2,2'-dithiodipyridine. These results indicate that overexpression of a zinc-binding protein can quickly diminish [Zn2+]i following zinc influx, but elevate [Zn2+]i under conditions of oxidative stress, providing protective yet potentially endangering effects.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Metalotioneína/biossíntese , Oxidantes/farmacologia , Zinco/metabolismo , Animais , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Metalotioneína/genética , Metalotioneína/farmacologia , Ratos , Ratos Sprague-Dawley
10.
Mol Pharmacol ; 62(3): 618-27, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12181438

RESUMO

The emergence of zinc as a potent neurotoxin has prompted the development of techniques suitable for the measurement of intracellular free zinc ([Zn(2+)](i)) in cultured cells. Accordingly, a new family of Zn(2+)-sensitive fluorophores has become available. Using ionophore-induced elevations of [Zn(2+)](i) in cultured neurons, we measured [Zn(2+)](i)-induced changes in the novel dyes FuraZin-1 and FluoZin-2 and compared them with the established [Zn(2+)](i)-sensitive fluorophores mag-fura-2 and Newport Green. All of these dyes effectively detected [Zn(2+)](i), and FuraZin-1, FluoZin-2, and Newport Green showed selectivity for [Zn(2+)](i) over [Ca(2+)](i) and [Mg(2+)](i). However, the dyes showed little difference in their apparent sensitivity to [Zn(2+)](i), even though their in vitro affinities for Zn(2+) varied from 20 nM to 3 microM. We show herein that this is a consequence of the relatively high concentrations of intracellular dye used in experiments of this nature. Thus, for the measurement of [Zn(2+)](i), the sensitivity of the reporting system is dominated by the intracellular dye concentration, whereas dye affinity is unimportant. We extend these findings to show that calibration of dye signal to ion concentration is critically dependent on precise measurement of intracellular dye concentration.


Assuntos
Neurônios/química , Zinco/análise , Animais , Artefatos , Células Cultivadas , Corantes/análise , Masculino , Microscopia de Fluorescência/métodos , Ratos , Ratos Sprague-Dawley
11.
J Neuropathol Exp Neurol ; 61(4): 358-67, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11939591

RESUMO

A number of mechanisms have been proposed to contribute to the selective neuronal cell loss observed during Alzheimer disease (AD). These include the formation and accumulation of amyloid-beta (Abeta)-containing plaques, neurofibrillary tangles (NFTs), and inflammatory processes mediated by astrocytes and microglia. Neuronal responses to such insults in AD brain include increased protein levels and immunoreactivity for kinases known to regulate cell cycle progression. One down-stream target of these cell cycle regulatory proteins, the Retinoblastoma susceptibility gene product (pRb), has been shown to exhibit altered expression patterns in AD. Furthermore, in vitro studies have implicated pRb and one of the transcription factors it regulates, E2F1, in Abeta-induced cell death. To further explore the role of these proteins in AD, we examined the distribution of the E2F1 transcription factor and the hyperphosphorylated form of pRb (ppRb), which is unable to bind and regulate E2F activity, in the cortex of patients with AD and in non-demented controls. We observed increased ppRb and E2FI immunoreactivity in AD brain, with ppRb predominately located in the nucleus and E2F1 in the cytoplasm. Although neither of these proteins significantly co-localized with NFTs, both ppRb and E2F1 were found in cells surrounding a subset of Abeta-containing plaques. These results support a role for G1 to S phase cell cycle regulators in AD.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neurônios/metabolismo , Proteína do Retinoblastoma/metabolismo , Fatores de Transcrição/metabolismo , Idoso , Idoso de 80 Anos ou mais , Ciclo Celular , Proteínas de Ciclo Celular/genética , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Fosforilação , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...