Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3070, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321022

RESUMO

Temperature has a significant impact on the performance of the neuromuscular system and motor control processes. The smallest functional components of these systems are motor units (MUs), which may differ significantly between different muscles. The influence of temperature on the contractile properties of slow-twitch (S) MUs from soleus (SOL) muscles in rats was investigated under hypothermia (25 °C), normothermia (37 °C), and hyperthermia (41 °C). Hypothermia prolonged the twitch time parameters, decreased the rate of force development, increased the twitch-to-tetanus ratio, enhanced twitch force, and abolished post-tetanic depression. In contrast, hyperthermia did not alter twitch time parameters. Moreover, there was no effect on force despite the noted increase in post-tetanic depression and the twitch-to-tetanus ratio. Therefore, hypothermia induced more profound changes in S MUs compared with hyperthermia. The temperature effects in SOL MUs were compared to the effects previously reported for S MUs in the medial gastrocnemius (MG). The major differences between the S MUs of both muscles were the effects of temperature on twitch force, post-tetanic force modulation, twitch-to-tetanus ratio, and the slope of the force-frequency curve under hypothermia. Hyperthermia shortened twitch time parameters solely in the MG. In contrast, post-tetanic depression, twitch-to-tetanus ratio, and the slope of the force-frequency curve were influenced by hyperthermia only in SOL MUs. The different temperature effects of S MUs probably corresponded to differences in muscle architecture and their diverse functional tasks and enzyme activity. In summary, S MUs in SOL are more thermal-sensitive than their counterparts in MG.


Assuntos
Hipotermia , Tétano , Ratos , Animais , Temperatura , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia
2.
J Electromyogr Kinesiol ; 68: 102738, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535115

RESUMO

The effects of hypothermia and hyperthermia on mammalian skeletal muscle function have previously been reported. However, their effects on the contractile properties of different motor unit (MU) types were not described. This study aimed to explore the effect of temperature on contractile properties of MUs in rat medial gastrocnemius kept at 25 °C (hypothermia), 37 °C (normothermia), and 41 °C (hyperthermia). Hypothermia prolonged the twitch time parameters of all MU types, shifting the steep part of the force-frequency curve towards lower frequencies and increasing its steepness. In addition, it reduced the rate of force development but not the twitch and tetanus forces of slow-twitch (S) MUs. Moreover, it reduced the tetanic force of fast-twitch fatigable (FF) MUs and increased the twitch force of fast-twitch fatigue-resistant (FR) MUs. In contrast, hyperthermia had opposite effects on twitch time properties and the force-frequency relationship. The twitch-to-tetanus ratio decreased for FF and FR MUs, and the steep part of the force-frequency curve shifted towards higher frequencies and decreased in steepness. Our findings indicate that FF MUs are the most sensitive and S MUs are the least sensitive to temperature. Furthermore, force control processes involving changes in motoneuronal firing frequency were radically modified for fast MUs, especially FF MUs.


Assuntos
Hipotermia , Tétano , Ratos , Animais , Músculo Esquelético/fisiologia , Ratos Wistar , Temperatura , Contração Muscular/fisiologia , Estimulação Elétrica , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...