Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36031062

RESUMO

Stomach loss has occurred independently multiple times during gnathostome evolution with notable frequency within the Teleostei. Significantly, this loss of acid-peptic digestion has been found to correlate with the secondary genomic loss of the gastric proton pump subunits (atp4a, atp4b) and pepsinogens/pepsins (pga, pgc). Gastric glands produce gastric juice containing the acid and pepsin and thus their presence is a hallmark feature of a digestive system capable of acid-peptic digestion. However, in gobiid fishes although oesogaster and gastric glands have been identified histologically, their functional significance has been questioned. In the present study we address whether the gastric proton pump is present and expressed in gastric glands of the goby Neogobius species (Gobiidae) and in members of the family Oxudercidae, a group of amphibious gobiid fishes commonly known as mudskippers (genera: Periophthalmus, Boleophthalmus, Periophthalmodon and Scartelaos). We confirmed the presence of gastric glands and have immunohistochemically localized gastric proton pump expression to these glands in Neogobius fluviatilis and Periophthalmus novemradiatus, Periophthalmus barbarus and Boleophthalmus boddarti. Genome analysis in Neogobius melanostomus, Periophthalmus magnuspinnatus, Scartelaos histophorus, Boleophthalmus pectinirostris, and Periophthalmodon schlosseri revealed the presence of both atp4a and atp4b subunit orthologues in all species in a conserved genomic loci organization. Moreover, it was possible to deduce that the complete open reading frame and the key functional amino acid residues are present. The conserved expression of the gastric proton pump provides clear evidence of the potential for gastric acid secretion indicating that acid digestion is retained in these gobiid fishes and not lost.


Assuntos
Perciformes , Bombas de Próton , Animais , Aminoácidos/metabolismo , Peixes/genética , Peixes/metabolismo , Pepsina A/metabolismo , Pepsinogênios/metabolismo , Perciformes/metabolismo , Bombas de Próton/genética , Bombas de Próton/metabolismo , Estômago
2.
Artigo em Inglês | MEDLINE | ID: mdl-31870932

RESUMO

The dendritic organ (DO) is a salt secretory organ in the Plotosidae marine catfishes. The potential role of the DO in ammonia excretion was investigated by examining the effects of salinity [brackishwater (BW 3‰), seawater (SW 34‰) and hypersaline water (HSW 60‰)] acclimation and DO ligation on ammonia excretion and ammonia transporter expression by immunohistochemistry (IHC), immunoblotting (IB) and qPCR. Ammonia flux rates (JAmm) were significantly lower in BW compared to SW and HSW. DO ligation resulted in a significantly lower JAmm in SW but not BW fish. IHC demonstrated apical and basolateral localization of Rhesus-associated glycoprotein (Rhag-like) and Rhbg-like proteins, respectively, in parenchymal cells of the DO acini. In the gills, which are the primary site of ammonia excretion in teleost fishes, IHC showed an apical localization of Rhag-like protein in some Na+/K+-ATPase (NKA) immunoreactive (IR) cells limited to a few interlamellar regions of the filament and, in both apical and basolateral membranes of pillar cells irrespective of treatment group. In gills, the distribution of NKA-IR cells showed no salinity and/or ligation dependency. IB of Rhag and Rhbg-like proteins was found only in the gills and expression levels did not change with salinity but ligation in BW decreased Rhbg-like levels. Although Rhcg was not detected with heterologous antibodies, rhcg1 mRNA expression was detected in both gills and DO. HSW was associated with the lowest expression in DO and ligations in SW and BW were without effect on branchial expression levels. Taken together these results indicate the DO potentially has a physiological role in ammonia excretion under SW conditions.


Assuntos
Amônia/metabolismo , Peixes-Gato/metabolismo , Proteínas de Peixes/metabolismo , Brânquias/metabolismo , Glicoproteínas/metabolismo , Animais , Peixes-Gato/crescimento & desenvolvimento , Proteínas de Peixes/genética , Glicoproteínas/genética , Filogenia , Sistema do Grupo Sanguíneo Rh-Hr/química , Sistema do Grupo Sanguíneo Rh-Hr/metabolismo , Salinidade , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Equilíbrio Hidroeletrolítico
3.
PLoS One ; 13(10): e0206206, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30352080

RESUMO

Unique amongst the teleost, Plotosidae catfish possess a dendritic organ (DO) as a purported salt secreting organ, whereas other marine teleosts rely on their gill ionocytes for active NaCl excretion. To address the role of the DO in ionregulation, ligation experiments were conducted in brackish water (BW) 3‰ and seawater (SW) 34‰ acclimated Plotosus lineatus and compared to sham operated fish. Ligation in SW resulted in an osmoregulatory impairment in blood (elevated ions and hematocrit) and muscle (dehydration). However, SW ligation did not elicit compensatory changes in gill or kidney Na+/K+-ATPase (NKA) activity and/or protein expression while a decrease in anterior intestine and increased in posterior intestine were observed but this was not reflected at the protein level. Following ligation in SW, protein levels of carbonic anhydrase (CA) and V-ATPase B subunit (VHAB) were higher in kidney but either lower (CA) or unchanged (VHAB) in other tissues. Taken together, the osmotic disturbance in ligated SW fish indicates the central role of the DO in salt secretion and the absence of a compensatory response from the gill.


Assuntos
Estruturas Animais/fisiologia , Peixes-Gato/fisiologia , Osmorregulação/fisiologia , Pressão Osmótica/fisiologia , Aclimatação , Estruturas Animais/cirurgia , Animais , Peixes-Gato/cirurgia , Proteínas de Peixes/metabolismo , Brânquias/fisiologia , Ligadura/métodos , Águas Salinas/química , Salinidade , Água do Mar/química , Cloreto de Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Equilíbrio Hidroeletrolítico
4.
Front Physiol ; 9: 761, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018560

RESUMO

Unlike other marine teleosts, the Plotosidae catfishes reportedly have an extra-branchial salt secreting dendritic organ (DO). Salinity acclimation [brackishwater (BW) 3aaa, seawater (SWcontrol) 34aaa, and hypersaline water (HSW) 60aaa] for 14 days was used to investigate the osmoregulatory abilities of Plotosus lineatus through measurements of blood chemistry, muscle water content (MWC), Na+/K+-ATPase (NKA) specific activity and ion transporter expression in gills, DO, kidney and intestine. Ion transporter expression was determined using immunoblotting, immunohistochemistry (IHC) and quantitative polymerase chain reaction (qPCR). HSW elevated mortality, plasma osmolality and ions, and hematocrit, and decreased MWC indicating an osmoregulatory challenge. NKA specific activity and protein levels were significantly higher in DO compared to gill, kidney and intestine at all salinities. NKA specific activity increased in kidney and posterior intestine with HSW but only kidney showed correspondingly higher NKA α-subunit protein levels. Since DO mass was greater in HSW, the total amount of DO NKA activity expressed per gram fish was greater indicating higher overall capacity. Gill NKA and V-ATPase protein levels were greater with HSW acclimation but this was not reflected in NKA activity, mRNA or ionocyte abundance. BW acclimation resulted in lower NKA activity in gill, kidney and DO. Cl- levels were better regulated and the resulting strong ion ratio in BW suggests a metabolic acidosis. Elevated DO heat shock protein 70 levels in HSW fish indicate a cellular stress. Strong NKA and NKCC1 (Na+:K+:2Cl- cotransporter1) co-localization was observed in DO parenchymal cells, which was rare in gill ionocytes. NKCC1 immunoblot expression was only detected in DO, which was highest at HSW. Cystic fibrosis transmembrane regulator Cl- channel (CFTR) localize apically to DO NKA immunoreactive cells. Taken together, the demonstration of high NKA activity in DO coexpressed with NKCC1 and CFTR indicates the presence of the conserved secondary active Cl- secretion mechanism found in other ion transporting epithelia suggesting a convergent evolution with other vertebrate salt secreting organs. However, the significant osmoregulatory challenge of HSW indicates that the DO may be of limited use under more extreme salinity conditions in contrast to the gill based ionoregulatory strategy of marine teleosts.

5.
Artigo em Inglês | MEDLINE | ID: mdl-25236868

RESUMO

Freshwater tilapia (Oreochromis niloticus) were intraperitoneally injected with sublethal doses of cadmium (1.25 or 2.5 mg Cd kg(-1) body mass) and sampled after 1, 4 and 7 days in order to evaluate the mechanisms of Cd toxicity at physiological and biochemical levels. Cd levels were significantly elevated in the gill and kidney following injection however levels in the kidney continued to accumulate while levels in the gill either did not change or decreased with time. Cd caused a generalized stress condition as indicated by an increase in blood glucose, lactate and cortisol levels as well as an oxidative stress indicated by increases in lipid peroxidation and protein carbonyl content. Furthermore, tilapia exhibited impairment in their osmoregulatory status based on the fall in plasma sodium levels. Concerning ion regulatory disruption, the kidney was the most affected organ since there was a generalized increase in renal Na(+)/K(+)-ATPase activity after 1 day of exposure to Cd followed by a significant decrease in day 7. This study provides some insights into the mechanisms of Cd toxicity at physiological and biochemical levels and complements previously reported findings on O. niloticus. The disruption of ion homeostasis, alterations in Na(+)/K(+)-ATPase activity and oxidative damage are the effects of Cd exposure that can be integrated in a comprehensive model for Cd impacts.


Assuntos
Cádmio/toxicidade , Osmorregulação/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Tilápia/fisiologia , Animais , Biomarcadores , Cádmio/química , Cádmio/metabolismo , Regulação Enzimológica da Expressão Gênica , Brânquias/efeitos dos fármacos , Rim , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Estresse Oxidativo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...