Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 181(15): 2459-2477, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38581262

RESUMO

BACKGROUND AND PURPOSE: Neurotransmission and neuroinflammation are controlled by local increases in both extracellular ATP and the endocannabinoid 2-arachidonoyl glycerol (2-AG). While it is known that extracellular ATP stimulates 2-AG production in cells in culture, the dynamics and molecular mechanisms that underlie this response remain poorly understood. Detection of real-time changes in eCB levels with the genetically encoded sensor, GRABeCB2.0, can address this shortfall. EXPERIMENTAL APPROACH: 2-AG and arachidonoylethanolamide (AEA) levels in Neuro2a (N2a) cells were measured by LC-MS, and GRABeCB2.0 fluorescence changes were detected using live-cell confocal microscopy and a 96-well fluorescence plate reader. KEY RESULTS: 2-AG and AEA increased GRABeCB2.0 fluorescence in N2a cells with EC50 values of 81 and 58 nM, respectively; both responses were reduced by the cannabinoid receptor type 1 (CB1R) antagonist SR141617 and absent in cells expressing the mutant-GRABeCB2.0. ATP increased only 2-AG levels in N2a cells, as measured by LC-MS, and induced a transient increase in the GRABeCB2.0 signal within minutes primarily via activation of P2X7 receptors (P2X7R). This response was dependent on diacylglycerol lipase ß activity, partially dependent on extracellular calcium and phospholipase C activity, but not controlled by the 2-AG hydrolysing enzyme, α/ß-hydrolase domain containing 6 (ABHD6). CONCLUSIONS AND IMPLICATIONS: Considering that P2X7R activation increases 2-AG levels within minutes, our results show how these molecular components are mechanistically linked. The specific molecular components in these signalling systems represent potential therapeutic targets for the treatment of neurological diseases, such as chronic pain, that involve dysregulated neurotransmission and neuroinflammation.


Assuntos
Ácidos Araquidônicos , Endocanabinoides , Glicerídeos , Neurônios , Receptores Purinérgicos P2X7 , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Ácidos Araquidônicos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Camundongos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Monoacilglicerol Lipases/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37958673

RESUMO

The endocannabinoid system (ECS) is a new target for the development of retinal disease therapeutics, whose pathophysiology involves neurodegeneration and neuroinflammation. The endocannabinoid 2-arachidonoylglycerol (2-AG) affects neurons and microglia by activating CB1/CB2 cannabinoid receptors (Rs). The aim of this study was to investigate the effects of 2-AG on the CB1R expression/downregulation and retinal neurons/reactive microglia, when administered repeatedly (4 d), in three different paradigms. These involved the 2-AG exogenous administration (a) intraperitoneally (i.p.) and (b) topically and (c) by enhancing the 2-AG endogenous levels via the inhibition (AM11920, i.p.) of its metabolic enzymes (MAGL/ABHD6). Sprague Dawley rats were treated as mentioned above in the presence or absence of CB1/CB2R antagonists and the excitatory amino acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Immunohistochemistry, Western blot and a 2-AG level analyses were performed. The 2-AG repeated treatment (i.p.) induced the CB1R downregulation, abolishing its neuroprotective actions. However, 2-AG attenuated the AMPA-induced activation of microglia via the CB2R, as concurred by the AM630 antagonist effect. Topically administered 2-AG was efficacious as a neuroprotectant/antiapoptotic and anti-inflammatory agent. AM11920 increased the 2-AG levels providing neuroprotection against excitotoxicity and reduced microglial activation without affecting the CB1R expression. Our findings show that 2-AG, in the three paradigms studied, displays differential pharmacological profiles in terms of the downregulation of the CB1R and neuroprotection. All treatments, however, attenuated the activation of microglia via the CB2R activation, supporting the anti-inflammatory role of 2-AG in the retina.


Assuntos
Endocanabinoides , Microglia , Ratos , Animais , Endocanabinoides/farmacologia , Endocanabinoides/metabolismo , Receptores de Canabinoides/metabolismo , Microglia/metabolismo , Ratos Sprague-Dawley , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , Retina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
3.
ChemMedChem ; 18(21): e202100406, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34486233

RESUMO

Fine-tuning than complete disruption of 2-arachidonoylglycerol (2-AG) metabolism in the brain represents a promising pharmacological approach to limit potential untoward effects associated with complete blockade of monoacylglycerol lipase (MGL), the primary hydrolase of 2-AG. This could be achieved through a/b-hydrolase domain containing 6 (ABHD6) inhibition, which will provide a smaller and safer contribution to 2-AG regulation in the brain. Pharmacological studies with ABHD6 inhibitors have recently been reported, where modulation of ABHD6 activity either through CB1R-dependent or CB1R-independent processes showed promise in preclinical models of epilepsy, neuropathic pain and inflammation. Furthermore in the periphery, ABHD6 modulates 2-AG and other fatty acid monoacylglycerols (MAGs) and is implicated in Type-2 diabetes, metabolic syndrome and potentially other diseases. Herein, we report the discovery of single-digit nanomolar potent and highly specific ABHD6 inhibitors with >1000-fold selectivity against MGL and FAAH. The new ABHD6 inhibitors provide early leads to develop therapeutics for neuroprotection and the treatment of inflammation and diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Neuralgia , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inflamação/tratamento farmacológico , Neuralgia/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hidrolases , Monoacilglicerol Lipases
4.
Sci Rep ; 12(1): 22255, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564457

RESUMO

Triple-negative breast cancer (TNBC) is associated with high mortality due to the high expression of pro-inflammatory cytokines and lack of targeted therapies. N-acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase that promotes inflammatory responses through the deactivation of Palmitoylethanolamide (PEA), an endogenous bioactive lipid mediator. Here, we examined NAAA expression in TNBC cells (MDA-MB-231 and MDA-MB-BrM2 cells) and the effects of NAAA inhibition on TNBC tumor growth, using a selective NAAA inhibitor AM11095 (IC50 = 20 nM). TNBC cells expressed elevated levels of full-length and splice mRNAs naaa variants. TNBC cells also express the N-acyl ethanol amides and elevated levels of the two fatty acid cores arachidonic (AA) and docosahexaenoic (DHA). PEA or AM11095 inhibited the secretion of IL-6 and IL-8, reduced the activation of the NF-kB pathway, decreased the expression of VEGF and Placental growth factor (PLGF) in TNBCs, and inhibited tumor cell migration in vitro. Using cellular magnetic resonance imaging (MRI), body images of mice administered with human MDA-MB-BrM2 cells treated with AM11095 showed a significant decrease in tumor numbers with a lower volume of tumors and increased mice survival. Mice untreated or treated with vehicle control showed a high number of tumors with high volumes in multiple organs. Thus, NAAA inhibition may constitute a potential therapeutic approach in the management of TNBC-associated inflammation and tumor growth.


Assuntos
Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Feminino , Animais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Amidoidrolases/genética , Amidoidrolases/metabolismo , Fator de Crescimento Placentário/uso terapêutico , Inflamação/tratamento farmacológico , Amidas/uso terapêutico
5.
Sci Rep ; 12(1): 5328, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351947

RESUMO

While the prevalence of breast cancer metastasis in the brain is significantly higher in triple negative breast cancers (TNBCs), there is a lack of novel and/or improved therapies for these patients. Monoacylglycerol lipase (MAGL) is a hydrolase involved in lipid metabolism that catalyzes the degradation of 2-arachidonoylglycerol (2-AG) linked to generation of pro- and anti-inflammatory molecules. Here, we targeted MAGL in TNBCs, using a potent carbamate-based inhibitor AM9928 (hMAGL IC50 = 9 nM) with prolonged pharmacodynamic effects (46 h of target residence time). AM9928 blocked TNBC cell adhesion and transmigration across human brain microvascular endothelial cells (HBMECs) in 3D co-cultures. In addition, AM9928 inhibited the secretion of IL-6, IL-8, and VEGF-A from TNBC cells. TNBC-derived exosomes activated HBMECs resulting in secretion of elevated levels of IL-8 and VEGF, which were inhibited by AM9928. Using in vivo studies of syngeneic GFP-4T1-BrM5 mammary tumor cells, AM9928 inhibited tumor growth in the mammary fat pads and attenuated blood brain barrier (BBB) permeability changes, resulting in reduced TNBC colonization in brain. Together, these results support the potential clinical application of MAGL inhibitors as novel treatments for TNBC.


Assuntos
Monoacilglicerol Lipases , Neoplasias de Mama Triplo Negativas , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Humanos , Inflamação , Monoacilglicerol Lipases/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
6.
Br J Pharmacol ; 179(8): 1679-1694, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34791641

RESUMO

BACKGROUND AND PURPOSE: N-Acylethanolamine acid amidase (NAAA) is a lysosomal enzyme accountable for the breakdown of N-acylethanolamines (NAEs) and its pharmacological inhibition has beneficial effects in inflammatory conditions. The knowledge of NAAA in cancer is fragmentary with an unclarified mechanism, whereas its contribution to colorectal cancer (CRC) is unknown to date. EXPERIMENTAL APPROACH: CRC xenograft and azoxymethane models were used to assess the in vivo effect of NAAA inhibition. Further, the tumour secretome was evaluated by an oncogenic array, CRC cell lines were used for in vitro studies, cell cycle was analysed by cytofluorimetry, NAAA was knocked down with siRNA, human biopsies were obtained from surgically resected CRC patients, gene expression was measured by RT-PCR and NAEs were measured by LC-MS. KEY RESULTS: The NAAA inhibitor AM9053 reduced CRC xenograft tumour growth and counteracted tumour development in the azoxymethane model. NAAA inhibition affected the composition of the tumour secretome inhibiting the expression of EGF family members. In CRC cells, AM9053 reduced proliferation with a mechanism mediated by PPAR-α and TRPV1. AM9053 induced cell cycle arrest in the S phase associated with cyclin A2/CDK2 down-regulation. NAAA knock-down mirrored the effects of NAAA inhibition with AM9053. NAAA expression was down-regulated in human CRC tissues, with a consequential augmentation of NAE levels and dysregulation of some of their targets. CONCLUSION AND IMPLICATIONS: Our results show novel data on the functional importance of NAAA in CRC progression and the mechanism involved. We propose that this enzyme is a valid drug target for the treatment of CRC growth and development.


Assuntos
Neoplasias Colorretais , Etanolaminas , Amidoidrolases , Azoximetano , Neoplasias Colorretais/tratamento farmacológico , Etanolaminas/metabolismo , Humanos
7.
Neurotherapeutics ; 18(4): 2722-2736, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34553321

RESUMO

Opioids are essential drugs for pain management, although long-term use is accompanied by tolerance, necessitating dose escalation, and dependence. Pharmacological treatments that enhance opioid analgesic effects and/or attenuate the development of tolerance (with a desirable opioid-sparing effect in treating pain) are actively sought. Among them, N-palmitoylethanolamide (PEA), an endogenous lipid neuromodulator with anti-inflammatory and neuroprotective properties, was shown to exert anti-hyperalgesic effects and to delay the emergence of morphine tolerance. A selective augmentation in endogenous PEA levels can be achieved by inhibiting N-acylethanolamine acid amidase (NAAA), one of its primary hydrolyzing enzymes. This study aimed to test the hypothesis that NAAA inhibition, with the novel brain permeable NAAA inhibitor AM11095, modulates morphine's antinociceptive effects and attenuates the development of morphine tolerance in rats. We tested this hypothesis by measuring the pain threshold to noxious mechanical stimuli and, as a neural correlate, we conducted in vivo electrophysiological recordings from pain-sensitive locus coeruleus (LC) noradrenergic neurons in anesthetized rats. AM11095 dose-dependently (3-30 mg/kg) enhanced the antinociceptive effects of morphine and delayed the development of tolerance to chronic morphine in behaving rats. Consistently, AM11095 enhanced morphine-induced attenuation of the response of LC neurons to foot-shocks and prevented the attenuation of morphine effects following chronic treatment. Behavioral and electrophysiological effects of AM11095 on chronic morphine were paralleled by a decrease in glial activation in the spinal cord, an index of opioid-induced neuroinflammation. NAAA inhibition might represent a potential novel therapeutic approach to increase the analgesic effects of opioids and delay the development of tolerance.


Assuntos
Analgesia , Morfina , Amidoidrolases/uso terapêutico , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Animais , Etanolaminas , Morfina/farmacologia , Dor/tratamento farmacológico , Manejo da Dor , Ratos
8.
Neurotherapeutics ; 18(3): 1815-1833, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34235639

RESUMO

N-acylethanolamines (NAEs) are endogenous bioactive lipids reported to exert anti-inflammatory and neuroprotective effects mediated by cannabinoid receptors and peroxisome proliferator-activated receptors (PPARs), among others. Therefore, interfering with NAE signaling could be a promising strategy to decrease inflammation in neurological disorders such as multiple sclerosis (MS). Fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolyzing acid amidase (NAAA) are key modulators of NAE levels. This study aims to investigate and compare the effect of NAAA inhibition, FAAH inhibition, and dual inhibition of both enzymes in a mouse model of MS, namely the experimental autoimmune encephalomyelitis (EAE). Our data show that NAAA inhibition strongly decreased the hallmarks of the pathology. Interestingly, FAAH inhibition was less efficient in decreasing inflammatory hallmarks despite the increased NAE levels. Moreover, the inhibition of both NAAA and FAAH, using a dual-inhibitor or the co-administration of NAAA and FAAH inhibitors, did not show an added value compared to NAAA inhibition. Furthermore, our data suggest an important role of decreased activation of astrocytes and microglia in the effects of NAAA inhibition on EAE, while NAAA inhibition did not affect T cell recall. This work highlights the beneficial effects of NAAA inhibition in the context of central nervous system inflammation and suggests that the simultaneous inhibition of NAAA and FAAH has no additional beneficial effect in EAE.


Assuntos
Amidoidrolases/antagonistas & inibidores , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/prevenção & controle , Inibidores Enzimáticos/uso terapêutico , Amidoidrolases/metabolismo , Animais , Técnicas de Cocultura , Inibidores Enzimáticos/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico
10.
J Med Chem ; 64(9): 5956-5972, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33900772

RESUMO

N-Acylethanolamines are signaling lipid molecules implicated in pathophysiological conditions associated with inflammation and pain. N-Acylethanolamine acid amidase (NAAA) favorably hydrolyzes lipid palmitoylethanolamide, which plays a key role in the regulation of inflammatory and pain processes. The synthesis and structure-activity relationship studies encompassing the isothiocyanate pharmacophore have produced potent low nanomolar inhibitors for hNAAA, while exhibiting high selectivity (>100-fold) against other serine hydrolases and cysteine peptidases. We have followed a target-based structure-activity relationship approach, supported by computational methods and known cocrystals of hNAAA. We have identified systemically active inhibitors with good plasma stability (t1/2 > 2 h) and microsomal stability (t1/2 ∼ 15-30 min) as pharmacological tools to investigate the role of NAAA in inflammation, pain, and drug addiction.


Assuntos
Amidoidrolases/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Isotiocianatos/química , Isotiocianatos/farmacologia , Amidoidrolases/metabolismo , Estabilidade de Medicamentos , Humanos , Hidrólise , Relação Estrutura-Atividade
11.
Eur J Pain ; 25(6): 1367-1380, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33675555

RESUMO

BACKGROUND: Although paclitaxel is an effective chemotherapeutic agent used to treat multiple types of cancer (e.g. breast, ovarian, neck and lung), it also elicits paclitaxel-induced peripheral neuropathy (PIPN), which represents a major dose-limiting side effect of this drug. METHODS: As the endogenously produced N-acylethanolamine, palmitoylethanolamide (PEA), reverses paclitaxel-induced mechanical hypersensitivity in mice, the main goals of this study were to examine if paclitaxel affects levels of endogenous PEA in the spinal cord of mice and whether exogenous administration of PEA provides protection from the occurrence of paclitaxel-induced mechanical hypersensitivity. We further examined whether inhibition of N-acylethanolamine-hydrolysing acid amidase (NAAA), a hydrolytic PEA enzyme, would offer protection in mouse model of PIPN. RESULTS: Paclitaxel reduced PEA levels in the spinal cord, suggesting that dysregulation of this lipid signalling system may contribute to PIPN. Consistent with this idea, repeated administration of PEA partially prevented the paclitaxel-induced mechanical hypersensitivity. We next evaluated whether the selective NAAA inhibitor, AM9053, would prevent paclitaxel-induced mechanical hypersensitivity in mice. Acute administration of AM9053 dose-dependently reversed mechanical hypersensitivity through a PPAR-α mechanism, whereas repeated administration of AM9053 fully prevented the development of PIPN, without any evidence of tolerance. Moreover, AM9053 produced a conditioned place preference in paclitaxel-treated mice, but not in control mice. This pattern of findings suggests a lack of intrinsic rewarding effects, but a reduction in the pain aversiveness induced by paclitaxel. Finally, AM9053 did not alter paclitaxel-induced cytotoxicity in lung tumour cells. CONCLUSIONS: Collectively, these studies suggest that NAAA represents a promising target to treat and prevent PIPN. SIGNIFICANCE: The present study demonstrates that the chemotherapeutic paclitaxel alters PEA levels in the spinal cord, whereas repeated exogenous PEA administration moderately alleviates PIPN in mice. Additionally, targeting NAAA, PEA's hydrolysing enzyme with a selective compound AM9053 reverses and prevents the PIPN via the PPAR-α mechanism. Overall, the data suggest that selective NAAA inhibitors denote promising future therapeutics to mitigate and prevent PIPN.


Assuntos
Paclitaxel , Doenças do Sistema Nervoso Periférico , Amidoidrolases , Animais , Etanolaminas , Camundongos , PPAR alfa , Paclitaxel/toxicidade
12.
Neuropharmacology ; 185: 108450, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33450278

RESUMO

The endocannabinoid system has been shown to be a putative therapeutic target for retinal disease. Here, we aimed to investigate the ability of the endocannabinoid 2-arachidonoylglycerol (2-AG) and novel inhibitors of its metabolic enzymes, α/ß-hydrolase domain-containing 6 (ABHD6) and monoacylglycerol lipase (MAGL), a) to protect the retina against excitotoxicity and b) the mechanisms involved in the neuroprotection. Sprague-Dawley rats, wild type and Akt2-/- C57BL/6 mice were intravitreally administered with phosphate-buffered saline or (RS)-α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid hydrobromide (AMPA). 2-AG was intravitreally co-administered with AMPA in the absence and presence of AM251 or AM630 (cannabinoid 1 and 2 receptor antagonists, respectively) or Wortmannin [Phosphoinositide 3-Kinase (PI3K)/Akt inhibitor]. Inhibitors of ABHD6 and dual ABHD6/MAGL (AM12100 and AM11920, respectively) were co-administered with AMPA intravitreally in rats. Immunohistochemistry was performed using antibodies raised against retinal neuronal markers (bNOS), microglia (Iba1) and macroglia (GFAP). TUNEL assay and real-time PCR were also employed. The CB2 receptor was expressed in rat retina (approx. 62% of CB1 expression). 2-AG attenuated the AMPA-induced increase in TUNEL+ cells. 2-AG activation of both CB1 and CB2 receptors and the PI3K/Akt downstream signaling pathway, as substantiated by the use of Akt2-/- mice, afforded neuroprotection against AMPA excitotoxicity. AM12100 and AM11920 attenuated the AMPA-induced glia activation and produced a dose-dependent partial neuroprotection, with the dual inhibitor AM11920 being more efficacious. These results show that 2-AG has the pharmacological profile of a putative therapeutic for retinal diseases characterized by neurodegeneration and neuroinflammation, when administered exogenously or by the inhibition of its metabolic enzymes.


Assuntos
Anti-Inflamatórios/administração & dosagem , Ácidos Araquidônicos/administração & dosagem , Endocanabinoides/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Glicerídeos/administração & dosagem , Monoacilglicerol Lipases/antagonistas & inibidores , Retina/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade , Animais , Relação Dose-Resposta a Droga , Feminino , Injeções Intravítreas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/metabolismo , Neuroproteção/efeitos dos fármacos , Neuroproteção/fisiologia , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/administração & dosagem
13.
Front Pharmacol ; 11: 575691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101030

RESUMO

Adamantyl groups are key structural subunit commonly used in many marketed drugs targeting diseases ranging from viral infections to neurological disorders. The metabolic disposition of adamantyl compounds has been mostly studied using LC-MS based approaches. However, metabolite quantities isolated from biological preparations are often insufficient for unambiguous structural characterization by NMR. In this work, we utilized microcoil NMR in conjunction with LC-MS to characterize liver microsomal metabolites of an adamantyl based CB2 agonist AM9338, 1-(3-(1H-1,2,3-triazol-1-yl) propyl)-N-(adamantan-1-yl)-1H-indazole-3-carboxamide, a candidate compound for potential multiple sclerosis treatment. We have identified a total of 9 oxidative metabolites of AM9338 whereas mono- or di-hydroxylation of the adamantyl moiety is the primary metabolic pathway. While it is generally believed that the tertiary adamantyl carbons are the preferred sites of CYP450 oxidation, both the mono- and di-hydroxyl metabolites of AM9338 show that the primary oxidative sites are located on the secondary adamantyl carbons. To our knowledge this di-hydroxylated metabolite is a novel adamantyl metabolite that has not been reported before. Further, the stereochemistry of both mono- and di-hydroxyl adamantyl metabolites has been determined using NOE correlations. Furthermore, docking of AM9338 into the CYP3A4 metabolic enzyme corroborates with our experimental findings, and the modelling results also provide a possible mechanism for the unusual susceptibility of adamantyl secondary carbons to metabolic oxidations. The novel dihydroxylated AM9338 metabolite identified in this study, along with the previously known adamantyl metabolites, gives a more complete picture of the metabolic disposition for adamantyl compounds.

14.
Exp Eye Res ; 201: 108266, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32979397

RESUMO

Cannabinoids are part of an endogenous signaling system found throughout the body, including the eye. Hepler and Frank showed in the early 1970s that plant cannabinoids can lower intraocular pressure (IOP), an effect since shown to occur via cannabinoid CB1 and GPR18 receptors. Endocannabinoids are synthesized and metabolized enzymatically. Enzymes implicated in endocannabinoids breakdown include monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), but also ABHD12, NAAA, and COX-2. Inhibition of MAGL activity raises levels of the endocannabinoid 2-arachidonoyl glycerol and substantially lowers IOP. Blocking other cannabinoid metabolizing enzymes or cannabinoid transporters may similarly contribute to lowering IOP and so serve as therapeutic targets for treating glaucoma. We have tested blockers for several cannabinoid-metabolizing enzymes and transporters (FABP5 and membrane reuptake) for their ability to alter ocular pressure in a murine model of IOP. Of FAAH, ABHD12, NAAA, and COX2, only FAAH was seen to play a role in regulation of IOP. Only the FAAH blocker URB597 lowered IOP, but in a temporally, diurnally, and sex-specific manner. We also tested two blockers of cannabinoid transport (SBFI-26 and WOBE437), finding that each lowered IOP in a CB1-dependent manner. Though we see a modest, limited role for FAAH, our results suggest that MAGL is the primary cannabinoid-metabolizing enzyme in regulating ocular pressure, thus pointing towards a role of 2-arachidonoyl glycerol. Interestingly, inhibition of cannabinoid transport mechanisms independent of hydrolysis may prove to be an alternative strategy to lower ocular pressure.


Assuntos
Endocanabinoides/metabolismo , Pressão Intraocular/fisiologia , Hipertensão Ocular/metabolismo , Animais , Modelos Animais de Doenças , Transporte de Íons , Camundongos , Camundongos Endogâmicos C57BL , Hipertensão Ocular/fisiopatologia
15.
Bioorg Med Chem ; 28(1): 115195, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31761726

RESUMO

N-acylethanolamine acid amidase (NAAA) inhibition represents an exciting novel approach to treat inflammation and pain. NAAA is a cysteine amidase which preferentially hydrolyzes the endogenous biolipids palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA is an endogenous agonist of the nuclear peroxisome proliferator-activated receptor-α (PPAR-α), which is a key regulator of inflammation and pain. Thus, blocking the degradation of PEA with NAAA inhibitors results in augmentation of the PEA/PPAR-α signaling pathway and regulation of inflammatory and pain processes. We have prepared a new series of NAAA inhibitors exploring the azetidine-nitrile (cyanamide) pharmacophore that led to the discovery of highly potent and selective compounds. Key analogs demonstrated single-digit nanomolar potency for hNAAA and showed >100-fold selectivity against serine hydrolases FAAH, MGL and ABHD6, and cysteine protease cathepsin K. Additionally, we have identified potent and selective dual NAAA-FAAH inhibitors to investigate a potential synergism between two distinct anti-inflammatory molecular pathways, the PEA/PPAR-α anti-inflammatory signaling pathway,1-4 and the cannabinoid receptors CB1 and CB2 pathways which are known for their antiinflammatory and antinociceptive properties.5-8 Our ligand design strategy followed a traditional structure-activity relationship (SAR) approach and was supported by molecular modeling studies of reported X-ray structures of hNAAA. Several inhibitors were evaluated in stability assays and demonstrated very good plasma stability (t1/2 > 2 h; human and rodents). The disclosed cyanamides represent promising new pharmacological tools to investigate the potential role of NAAA inhibitors and dual NAAA-FAAH inhibitors as therapeutic agents for the treatment of inflammation and pain.


Assuntos
Amidoidrolases/antagonistas & inibidores , Cianamida/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Amidoidrolases/metabolismo , Animais , Cianamida/síntese química , Cianamida/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
16.
Bioorg Med Chem ; 27(23): 115096, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629610

RESUMO

FAAH inhibitors offer safety advantages by augmenting the anandamide levels "on demand" to promote neuroprotective mechanisms without the adverse psychotropic effects usually seen with direct and chronic activation of the CB1 receptor. FAAH is an enzyme implicated in the hydrolysis of the endocannabinoid N-arachidonoylethanolamine (AEA), which is a partial agonist of the CB1 receptor. Herein, we report the discovery of a new series of highly potent and selective carbamate FAAH inhibitors and their evaluation for neuroprotection. The new inhibitors showed potent nanomolar inhibitory activity against human recombinant and purified rat FAAH, were selective (>1000-fold) against serine hydrolases MGL and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Evaluation of FAAH inhibitors 9 and 31 using the in vitro competitive activity-based protein profiling (ABPP) assay confirmed that both inhibitors were highly selective for FAAH in the brain, since none of the other FP-reactive serine hydrolases in this tissue were inhibited by these agents. Our design strategy followed a traditional SAR approach and was supported by molecular modeling studies based on known FAAH cocrystal structures. To rationally design new molecules that are irreversibly bound to FAAH, we have constructed "precovalent" FAAH-ligand complexes to identify good binding geometries of the ligands within the binding pocket of FAAH and then calculated covalent docking poses to select compounds for synthesis. FAAH inhibitors 9 and 31 were evaluated for neuroprotection in rat hippocampal slice cultures. In the brain tissue, both inhibitors displayed protection against synaptic deterioration produced by kainic acid-induced excitotoxicity. Thus, the resultant compounds produced through rational design are providing early leads for developing therapeutics against seizure-related damage associated with a variety of disorders.


Assuntos
Amidoidrolases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fármacos Neuroprotetores/farmacologia , Piperazina/farmacologia , Piperidinas/farmacologia , Amidoidrolases/metabolismo , Animais , Desenho de Fármacos , Inibidores Enzimáticos/química , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/química , Piperazina/análogos & derivados , Piperidinas/química , Ratos
17.
Br J Pharmacol ; 176(20): 3972-3982, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31328790

RESUMO

BACKGROUND AND PURPOSE: Δ9 -tetrahydrocannabinol (THC) acts via cannabinoid CB1 receptors to increase feeding. Here, we assessed the orexigenic effect of AM11101, a novel CB1 receptor agonist designed to have a more favourable pharmacodynamic profile than THC. EXPERIMENTAL APPROACH: The acute, orexigenic effects of AM11101 and THC were compared in female rats. Food intake and meal patterns were also examined following once daily treatment with AM11101 and THC for 7 days. KEY RESULTS: AM11101 (0.01-0.1 mg·kg-1 ) increased food intake during the first hour following both acute and chronic treatments in pre-fed and freely feeding animals. This orexigenic effect persisted for up to 4 hr, with no compensatory decrease in feeding during the subsequent 4-22 hr. THC (1 mg·kg-1 ) increased 1-hr food intake in pre-fed animals, but was less reliable than AM11101 in increasing 1-hr food intake in freely feeding animals following both acute and chronic administration. The orexigenic effect of both compounds was due to an increase in meal size, not meal number. CONCLUSIONS AND IMPLICATIONS: Our study provides the first demonstration that AM11101 increases short-term food intake via a selective increase in meal size. AM11101 promotes a more reliable orexigenic effect than THC in freely feeding animals, with no subsequent compensatory decrease in feeding. AM11101 may offer a greater efficacy than THC and its congeners in stimulating food intake in underweight clinical populations.


Assuntos
Canabinoides/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Animais , Canabinoides/química , Relação Dose-Resposta a Droga , Dronabinol/química , Dronabinol/farmacologia , Feminino , Ratos , Ratos Long-Evans , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
18.
Neuropharmacology ; 144: 327-336, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30439418

RESUMO

Tobacco smoke is the leading preventable cause of death in the world and treatments aimed to increase success rate in smoking cessation by reducing nicotine dependence are sought. Activation of peroxisome proliferator-activated receptor-alpha (PPARα) by synthetic or endogenous agonists was shown to suppress nicotine-induced activation of mesolimbic dopamine system, one of the major neurobiological substrates of nicotine dependence, and nicotine-seeking behavior in rats and monkeys. An alternative indirect way to activate PPARα is inhibition of N-acylethanolamine acid amidase (NAAA), one of the major hydrolyzing enzyme for its endogenous agonists palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). We synthetized a novel specific brain permeable NAAA inhibitor, AM11095. We administered AM11095 to rats and carried out brain lipid analysis, a functional observational battery (FOB) to assess toxicity, in vivo electrophysiological recording from dopamine cells in the ventral tegmental area, brain microdialysis in the nucleus accumbens shell and behavioral experiments to assess its effect on nicotine -induced conditioned place preference (CPP). AM11095 (5 and 25 mg/kg, i.p.) was devoid of neurotoxic and behavioral effects and did not affect motor behavior and coordination. This NAAA inhibitor (5 mg/kg i.p.) increased OEA and PEA levels in the hippocampus and cortex, prevented nicotine-induced activation of mesolimbic dopamine neurons in the ventral tegmental area, nicotine-induced elevation of dopamine levels in the nucleus accumbens shell and decreased the expression of nicotine CPP. Our results indicate that NAAA inhibitors represent a new class of pharmacological tools to modulate brain PEA/PPARα signalling and show potential in the treatment of nicotine dependence.


Assuntos
Amidoidrolases/antagonistas & inibidores , Dopamina/metabolismo , Nicotina/farmacologia , Psicotrópicos/farmacologia , Recompensa , Amidoidrolases/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/toxicidade , Masculino , Camundongos , Agonistas Nicotínicos/farmacologia , Distribuição Aleatória , Ratos Sprague-Dawley , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia
19.
Bioorg Med Chem ; 27(1): 55-64, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446439

RESUMO

Monoacylglycerol lipase (MGL) inhibition provides a potential treatment approach to glaucoma through the regulation of ocular 2-arachidonoylglycerol (2-AG) levels and the activation of CB1 receptors. Herein, we report the discovery of new series of carbamates as highly potent and selective MGL inhibitors. The new inhibitors showed potent nanomolar inhibitory activity against recombinant human and purified rat MGL, were selective (>1000-fold) against serine hydrolases FAAH and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Protein-based 1H NMR experiments indicated that inhibitor 2 rapidly formed a covalent adduct with MGL with a residence time of about 6 h. This interconversion process "intrinsic reversibility" was exploited by modifications of the ligand's size (length and bulkiness) to generate analogs with "tunable' adduct residence time (τ). Inhibitor 2 was evaluated in a normotensive murine model for assessing intraocular pressure (IOP), which could lead to glaucoma, a major cause of blindness. Inhibitor 2 was found to decrease ocular pressure by ∼4.5 mmHg in a sustained manner for at least 12 h after a single ocular application, underscoring the potential for topically-administered MGL inhibitors as a novel therapeutic target for the treatment of glaucoma.


Assuntos
Carbamatos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Glaucoma/tratamento farmacológico , Monoacilglicerol Lipases/antagonistas & inibidores , Animais , Carbamatos/síntese química , Carbamatos/química , Carbamatos/farmacocinética , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoacilglicerol Lipases/química , Piperazinas/síntese química , Piperazinas/química , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Piperidinas/síntese química , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/uso terapêutico , Ratos , Relação Estrutura-Atividade
20.
Bioorg Med Chem ; 26(18): 4963-4970, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30122284

RESUMO

New oximes short-acting CB1 agonists were explored by the introduction of an internal oxime and polar groups at the C3 alkyl tail of Δ8-THC. The scope of the research was to drastically alter two important physicochemical properties hydrophobicity (log P) and topological surface area (tPSA) of the compound, which play a critical role in tissue distribution and sequestration (depot effect). Key synthesized analogs demonstrated sub-nanomolar affinity for CB1, marked reduction in hydrophobicity (ClogP∼2.5-3.5 vs 9.09 of Δ8-THC-DMH), and found to function as either agonists (trans-oximes) or neutral antagonists (cis-oximes) in a cAMP functional assay. All oxime analogs showed comparable affinity at the CB2 receptor, but surprisingly they were found to function as inverse agonists for CB2. In behavioral studies (i.e. analgesia, hypothermia) trans-oxime 8a exhibited a predictable fast onset (∼20 min) and short duration of pharmacological action (∼180 min), in contrast to the very prolonged duration of Δ8-THC-DMH (>24 h), thus limiting the potential for severe psychotropic side-effects associated with persistent activation of the CB1 receptor. We have conducted 100 ns molecular dynamic (MD) simulations of CB1 complexes with AM11542 (CB1 agonist) and both trans-8a and cis-8b isomeric oximes. These studies revealed that the C3 alkyl tail of cis-8b orientated within the CB1 binding pocket in a manner that triggered a conformational change that stabilized the CB1 receptor at its inactive-state (antagonistic functional effect). In contrast, the trans-8a isomer's conformation was coincided with that of the AM11542 CB1 agonist-bound structure, stabilizing the CB1 receptor at the active-state (agonistic functional effect). We have selected oxime trans-8a based on its potency for CB1, and favorable pharmacodynamic profile, such as fast onset and predictable duration of pharmacological action, for evaluation in pre-clinical models of anorexia nervosa.


Assuntos
Oximas/farmacologia , Receptor CB1 de Canabinoide/agonistas , Analgésicos/química , Analgésicos/farmacocinética , Analgésicos/farmacologia , Animais , Área Sob a Curva , Comportamento Animal/efeitos dos fármacos , Biotransformação , Células HEK293 , Humanos , Hipotermia/induzido quimicamente , Camundongos , Oximas/química , Oximas/farmacocinética , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...