Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Hematol Agents Med Chem ; 19(2): 131-149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32394846

RESUMO

In recent years, excessive use of antibiotics has been raising its head to a serious problem all around the world, as pathogens become drug-resistant and create challenges to the medical field. This failure of the most potent antibiotics that kill pathogens increases the thirst for researchers to look for another way of killing pathogens. It has led to the findings of antimicrobial peptide, which are the most potent peptides to destroy pathogens. This review gives special emphasis to the usage of marine bacteria and other microorganisms for antimicrobial peptide (AMP), which are eco-friendly as well as a developing class of natural and synthetic peptides with a wide spectrum of targets to pathogenic microbes. Consequently, a significant attention has been paid mainly to (i) the structure and types of antimicrobial peptides and (ii) mode of action and mechanism of antimicrobial peptide resistance to pathogens. In addition to this, the designing of AMPs has been analyzed thoroughly for reducing toxicity and developing better potent AMP. It has been done by the modified unnatural amino acids by amidation to target the control of biofilm and persister cells.


Assuntos
Peptídeos Antimicrobianos , Peptídeos Antimicrobianos/farmacologia , Bactérias , Humanos , Biologia Marinha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...