Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 73(8): 2454-2468, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35106531

RESUMO

Understanding how the environment regulates seed-bank dormancy changes is essential for forecasting seedling emergence in actual and future climatic scenarios, and to interpret studies of dormancy mechanisms at physiological and molecular levels. Here, we used a population threshold modelling approach to analyse dormancy changes through variations in the thermal range permissive for germination in buried seeds of Arabidopsis thaliana Cvi, a winter annual ecotype. Results showed that changes in dormancy level were mainly associated with variations in the higher limit of the thermal range permissive for germination. Changes in this limit were positively related to soil temperature during dormancy release and induction, and could be predicted using thermal time. From this, we developed a temperature-driven simulation to predict the fraction of the seed bank able to germinate in a realistic global warming scenario that approximated seedling emergence timing. Simulations predicted, in accordance with seedling emergence observed in the field, an increase in the fraction of the seed bank able to emerge as a result of global warming. In addition, our results suggest that buried seeds perceive changes in the variability of the mean daily soil temperature as the signal to change between dormancy release and induction according to the seasons.


Assuntos
Arabidopsis , Arabidopsis/fisiologia , Germinação/fisiologia , Aquecimento Global , Dormência de Plantas/fisiologia , Estações do Ano , Plântula/fisiologia , Sementes/fisiologia , Solo , Temperatura
2.
Funct Plant Biol ; 48(1): 28-39, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32723472

RESUMO

Seedling emergence in the field is strongly related to the dynamics of dormancy release and induction of the seed bank, which is mainly regulated by soil temperature. However, there is limited information on how temperature-driven effects on dormancy changes are modulated by the seed hydration-level. We investigated the effect of seed water content (SWC) on the dormancy release and dormancy induction in Polygonum aviculare L. seeds. We characterised quantitatively the interaction between seed water content (SWC) and temperature through the measurement of changes in the lower limit temperature for seed germination (Tl) during dormancy changes for seeds with different SWC. These relationships were inserted in existing population-based threshold models and were run against field obtained data. The model considering SWC was able to predict P. aviculare field emergence patterns. However, failure to consider SWC led to overestimations in the emergence size and timing. Our results show that in humid temperate habitats, the occurrence of eventual water shortages during late-winter or spring (i.e. short periods of water content below 31% SWC) can affect soil temperature effects on seed dormancy, and might lead reductions in the emergence size rather than to significant temporal displacements in the emergence window. In conclusion, SWC plays an important role for the perception of temperature signals that drive dormancy changes in buried seeds.


Assuntos
Germinação , Polygonum , Percepção , Sementes , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...