Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36076907

RESUMO

The progesterone receptor (PR) is a key player in major physiological and pathological responses in women, and the signaling pathways triggered following hormone binding have been extensively studied, particularly with respect to breast cancer development and progression. Interestingly, growing evidence suggests a fundamental role for PR on breast cancer cell homeostasis in hormone-depleted conditions, with hormone-free or unliganded PR (uPR) involved in the silencing of relevant genes prior to hormonal stimulation. We herein identify the protein arginine methyltransferase PRMT1 as a novel actor in uPR signaling. In unstimulated T47D breast cancer cells, PRMT1 interacts and functions alongside uPR and its partners to target endogenous progesterone-responsive promoters. PRMT1 helps to finely tune the silencing of responsive genes, likely by promoting a proper BRCA1-mediated degradation and turnover of unliganded PR. As such, PRMT1 emerges as a key transcriptional coregulator of PR for a subset of relevant progestin-dependent genes before hormonal treatment. Since women experience periods of hormonal fluctuation throughout their lifetime, understanding how steroid receptor pathways in breast cancer cells are regulated when hormones decline may help to determine how to override treatment failure to hormonal therapy and improve patient outcome.


Assuntos
Neoplasias da Mama , Proteína-Arginina N-Metiltransferases , Receptores de Progesterona , Neoplasias da Mama/metabolismo , Feminino , Humanos , Progesterona/metabolismo , Progestinas , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Receptores de Progesterona/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia
2.
Endocr Rev ; 43(1): 160-197, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33955470

RESUMO

Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.


Assuntos
Processamento de Proteína Pós-Traducional , Receptores de Esteroides , Humanos , Metilação , Proteínas Metiltransferases/metabolismo , Receptores de Esteroides/metabolismo
3.
Breast Cancer Res Treat ; 190(3): 389-401, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34561764

RESUMO

PURPOSE: Menin, encoded by the MEN1 gene, was recently reported to be involved in breast cancers, though the underlying mechanisms remain elusive. In the current study, we sought to further determine its role in mammary cells. METHODS: Menin expression in mammary lesions from mammary-specific Men1 mutant mice was detected using immunofluorescence staining. RT-qPCR and western blot were performed to determine the role of menin in ERα expression in human breast cancer cell lines. ChIP-qPCR and reporter gene assays were carried out to dissect the action of menin on the proximal ESR1 promoter. Menin expression in female patients with breast cancer was analyzed and its correlation with breast cancer subtypes was investigated. RESULTS: Immunofluorescence staining revealed that early mammary neoplasia in Men1 mutant mice displayed weak ERα expression. Furthermore, MEN1 silencing led to both reduced ESR1 mRNA and ERα protein expression in MCF7 and T47D cells. To further dissect the regulation of ESR1 transcription by menin, we examined whether and in which way menin could regulate the proximal ESR1 promoter, which has not been fully explored. Using ChIP analysis and reporter gene assays covering - 2500 bp to + 2000 bp of the TSS position, we showed that the activity of the proximal ESR1 promoter was markedly reduced upon menin downregulation independently of H3K4me3 status. Importantly, by analyzing the expression of menin in 354 human breast cancers, we found that a lower expression was associated with ER-negative breast cancer (P = 0.041). Moreover, among the 294 ER-positive breast cancer samples, reduced menin expression was not only associated with larger tumors (P = 0.01) and higher SBR grades (P = 0.005) but also with the luminal B-like breast cancer subtype (P = 0.006). Consistent with our clinical data, we demonstrated that GATA3 and FOXA1, co-factors in ESR1 regulation, interact physically with menin in MCF7 cells, and MEN1 knockdown led to altered protein expression of GATA3, the latter being a known marker of the luminal A subtype, in MCF7 cells. CONCLUSION: Taken together, our data provide clues to the important role of menin in ERα regulation and the formation of breast cancer subtypes.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Animais , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito , Humanos , Células MCF-7 , Camundongos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética
4.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962950

RESUMO

There is an urgent need to identify vulnerabilities in pancreatic ductal adenocarcinoma (PDAC). PDAC cells acquire metabolic changes that augment NADPH production and cytosolic redox homeostasis. Here, we show that high NADPH levels drive activity of NADPH oxidase 4 (NOX4) expressed in the endoplasmic reticulum (ER) membrane. NOX4 produces H2O2 metabolized by peroxiredoxin 4 (PRDX4) in the ER lumen. Using functional genomics and subsequent in vitro and in vivo validations, we find that PDAC cell lines with high NADPH levels are dependent on PRDX4 for their growth and survival. PRDX4 addiction is associated with increased reactive oxygen species, a DNA-PKcs-governed DNA damage response and radiosensitivity, which can be rescued by depletion of NOX4 or NADPH. Hence, this study has identified NOX4 as a protein that paradoxically converts the reducing power of the cytosol to an ER-specific oxidative stress vulnerability in PDAC that may be therapeutically exploited by targeting PRDX4.


Assuntos
Peróxido de Hidrogênio , Neoplasias Pancreáticas , Retículo Endoplasmático/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , NADP/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Oxirredução , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
iScience ; 23(6): 101236, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32563156

RESUMO

The progesterone receptor (PR) is an inducible transcription factor that plays critical roles in female reproductive processes and in several aspects of breast cancer tumorigenesis. Our report describes the type I protein arginine methyltransferase 1 (PRMT1) as a cofactor controlling progesterone pathway, through the direct methylation of PR. Mechanistic assays in breast cancer cells indicate that PRMT1 methylates PR at the arginine 637 and reduces the stability of the receptor, thereby accelerating its recycling and finally its transcriptional activity. Depletion of PRMT1 decreases the expression of a subset of progesterone-inducible genes, controlling breast cancer cells proliferation and migration. Consistently, Kaplan-Meier analysis revealed that low expression of PRMT1 predicts a longer survival among the subgroup with high PR. Our study highlights PR methylation as a molecular switch adapting the transcription requirement of breast cells during tumorigenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...