Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 54(12): 8139-8157, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047390

RESUMO

Behavioral findings suggest that aging alters the involvement of cortical sensorimotor mechanisms in postural control. However, corresponding accounts of the underlying neural mechanisms remain sparse, especially the extent to which these mechanisms are affected during more demanding tasks. Here, we set out to elucidate cortical correlates of altered postural stability in younger and older adults. 3D body motion tracking and high-density electroencephalography (EEG) were measured while 14 young adults (mean age = 24 years, 43% women) and 14 older adults (mean age = 77 years, 50% women) performed a continuous balance task under four different conditions. Manipulations were applied to the base of support (either regular or tandem (heel-to-toe) stance) and visual input (either static visual field or dynamic optic flow). Standing in tandem, the more challenging position, resulted in increased sway for both age groups, but for the older adults, only this effect was exacerbated when combined with optic flow compared to the static visual display. These changes in stability were accompanied by neuro-oscillatory modulations localized to midfrontal and parietal regions. A cluster of electro-cortical sources localized to the supplementary motor area showed a large increase in theta spectral power (4-7 Hz) during tandem stance, and this modulation was much more pronounced for the younger group. Additionally, the older group displayed widespread mu (8-12 Hz) and beta (13-30 Hz) suppression as balance tasks placed more demands on postural control, especially during tandem stance. These findings may have substantial utility in identifying early cortical correlates of balance impairments in otherwise healthy older adults.


Assuntos
Fluxo Óptico , Adulto , Idoso , Envelhecimento , Eletroencefalografia , Feminino , Humanos , Masculino , Lobo Parietal , Equilíbrio Postural , Adulto Jovem
2.
Clin Neurophysiol ; 131(5): 1119-1128, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32200093

RESUMO

OBJECTIVE: Individuals with a diagnosis of multiple sclerosis (MS) often present with cognitive and motor deficits, and thus the ability to perform tasks that rely on both domains may be particularly impaired. Yet, dual-task walking studies yield mixed results. Individual variance in the ability to cope with brain insult and mobilize additional brain resources may contribute to mixed findings. METHODS: To test this hypothesis, we acquired event-related potentials (ERP) in individuals with MS and healthy controls (HCs) performing a Go/NoGo task while sitting (i.e., single task) or walking (i.e., dual-task) and looked at the relationship between task related modulation of the brain response and performance. RESULTS: On the Go/NoGo task the MS group showed dual-task costs when walking, whereas HCs showed a dual-task benefit. Further, whereas the HC group showed modulation of the brain response as a function of task load, this was not the case in the MS group. Analysis for the pooled sample revealed a positive correlation between load-related ERP effects and dual-task performance. CONCLUSIONS: These data suggest a neurophysiological marker of cognitive-motor dysfunction in MS. SIGNIFICANCE: Understanding neural processes underlying dual-task walking will help identify objective brain measurements of real-world issues and may improve assessment of MS.


Assuntos
Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Eletroencefalografia/métodos , Transtornos Motores/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Desempenho Psicomotor/fisiologia , Caminhada/fisiologia , Adulto , Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Transtornos Motores/fisiopatologia , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Estimulação Luminosa/métodos , Distribuição Aleatória , Imagem Corporal Total/métodos
3.
Brain Res ; 1716: 62-69, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28532853

RESUMO

Advancements in acquisition technology and signal-processing techniques have spurred numerous recent investigations on the electro-cortical signals generated during whole-body motion. This approach, termed Mobile Brain/Body Imaging (MoBI), has the potential to elucidate the neural correlates of perceptual and cognitive processes during real-life activities, such as locomotion. However, as of yet, no one has assessed the long-term stability of event-related potentials (ERPs) recorded under these conditions. Therefore, the objective of the current study was to evaluate the test-retest reliability of cognitive ERPs recorded while walking. High-density EEG was acquired from 12 young adults on two occasions, separated by an average of 2.3years, as they performed a Go/No-Go response inhibition paradigm. During each testing session, participants performed the task while walking on a treadmill and seated. Using the intraclass correlation coefficient (ICC) as a measure of agreement, we focused on two well-established neurophysiological correlates of cognitive control, the N2 and P3 ERPs. Following ICA-based artifact rejection, the earlier N2 yielded good to excellent levels of reliability for both amplitude and latency, while measurements for the later P3 component were generally less robust but still indicative of adequate to good levels of stability. Interestingly, the N2 was more consistent between walking sessions, compared to sitting, for both hits and correct rejection trials. In contrast, the P3 waveform tended to have a higher degree of consistency during sitting conditions. Overall, these results suggest that the electro-cortical signals obtained during active walking are representative of stable indices of neurophysiological function.


Assuntos
Potenciais Evocados/fisiologia , Caminhada/fisiologia , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Potenciais Evocados P300/fisiologia , Teste de Esforço/métodos , Feminino , Marcha/fisiologia , Humanos , Locomoção , Masculino , Neuroimagem , Desempenho Psicomotor/fisiologia , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Adulto Jovem
4.
J Neurophysiol ; 120(5): 2246-2259, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067106

RESUMO

During navigation of complex environments, the brain must continuously adapt to both external demands, such as fluctuating sensory inputs, and internal demands, such as engagement in a cognitively demanding task. Previous studies have demonstrated changes in behavior and gait with increased sensory and cognitive load, but the underlying cortical mechanisms remain largely unknown. In the present study, in a mobile brain/body imaging (MoBI) approach, 16 young adults walked on a treadmill with high-density EEG while 3-dimensional (3D) motion capture tracked kinematics of the head and feet. Visual load was manipulated with the presentation of optic flow with and without continuous mediolateral perturbations. The effects of cognitive load were assessed by the performance of a go/no-go task on half of the blocks. During increased sensory load, participants walked with shorter and wider strides, which may indicate a more restrained pattern of gait. Interestingly, cognitive task engagement attenuated these effects of sensory load on gait. Using an independent component analysis and dipole-fitting approach, we found that cautious gait was accompanied by neuro-oscillatory modulations localized to frontal (supplementary motor area, anterior cingulate cortex) and parietal (inferior parietal lobule, precuneus) areas. Our results show suppression in alpha/mu (8-12 Hz) and beta (13-30 Hz) rhythms, suggesting enhanced activation of these regions with unreliable sensory inputs. These findings provide insight into the neural correlates of gait adaptation and may be particularly relevant to older adults who are less able to adjust to ongoing cognitive and sensory demands while walking. NEW & NOTEWORTHY The neural underpinnings of gait adaptation in humans are poorly understood. To this end, we recorded high-density EEG combined with three-dimensional body motion tracking as participants walked on a treadmill while exposed to full-field optic flow stimulation. Perturbed visual input led to a more cautious gait pattern with neuro-oscillatory modulations localized to premotor and parietal regions. Our findings show a possible brain-behavior link that might further our understanding of gait and mobility impairments.


Assuntos
Cognição , Lobo Frontal/fisiologia , Marcha , Fluxo Óptico , Lobo Parietal/fisiologia , Adaptação Fisiológica , Adulto , Ritmo alfa , Feminino , Humanos , Masculino
5.
Neuroimage ; 117: 230-42, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25988225

RESUMO

Aging is associated with reduced abilities to selectively allocate attention across multiple domains. This may be particularly problematic during everyday multitasking situations when cognitively demanding tasks are performed while walking. Due to previous limitations in neuroimaging technology, much remains unknown about the cortical mechanisms underlying resource allocation during locomotion. Here, we utilized an EEG-based mobile brain/body imaging (MoBI) technique that integrates high-density event-related potential (ERP) recordings with simultaneously acquired foot-force sensor data to monitor gait patterns and brain activity concurrently. To assess effects of motor load on cognition we evaluated young (N=17; mean age=27.2) and older adults (N=16; mean age=63.9) and compared behavioral and ERP measures associated with performing a Go/No-Go response inhibition task as participants sat stationary or walked on a treadmill. Stride time and variability were also measured during task performance and compared to stride parameters obtained without task performance, thereby assessing effects of cognitive load on gait. Results showed that older, but not young adults' accuracy dropped significantly when performing the inhibitory task while walking. Young adults revealed ERP modulations at relatively early (N2 amplitude reduction) and later (earlier P3 latency) stages within the processing stream as motor load increased while walking. In contrast, older adults' ERP modulations were limited to later processing stages (increased P3 amplitude) of the inhibitory network. The relative delay and attenuation of ERP modulations accompanied by behavioral costs in older participants might indicate an age-associated loss in flexible resource allocation across multiple tasks. Better understanding of the neural underpinnings of these age-related changes may lead to improved strategies to reduce fall risk and enhance mobility in aging.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Teste de Esforço/métodos , Marcha/fisiologia , Inibição Psicológica , Desempenho Psicomotor/fisiologia , Adulto , Idoso , Função Executiva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Ambulatorial , Caminhada , Adulto Jovem
6.
Neuroimage ; 94: 55-64, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24642283

RESUMO

Walking while simultaneously performing cognitively demanding tasks such as talking or texting are typical complex behaviors in our daily routines. Little is known about neural mechanisms underlying cortical resource allocation during such mobile actions, largely due to portability limitations of conventional neuroimaging technologies. We applied an EEG-based Mobile Brain-Body Imaging (MOBI) system that integrates high-density event-related potential (ERP) recordings with simultaneously acquired foot-force sensor data to monitor gait patterns and brain activity. We compared behavioral and ERP measures associated with performing a Go/NoGo response-inhibition task under conditions where participants (N=18) sat in a stationary way, walked deliberately or walked briskly. This allowed for assessment of effects of increasing dual-task load (i.e. walking speed) on neural indices of inhibitory control. Stride time and variability were also measured during inhibitory task performance and compared to stride parameters without task performance, thereby assessing reciprocal dual-task effects on gait parameters. There were no task performance differences between sitting and either walking condition, indicating that participants could perform both tasks simultaneously without suffering dual-task costs. However, participants took longer strides under dual-task load, likely indicating an adaptive mechanism to reduce inter-task competition for cortical resources. We found robust differences in amplitude, latency and topography of ERP components (N2 and P3) associated with inhibitory control between the sitting and walking conditions. Considering that participants showed no dual-task performance costs, we suggest that observed neural alterations under increasing task-load represent adaptive recalibration of the inhibitory network towards a more controlled and effortful processing mode, thereby optimizing performance under dual-task situations.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Marcha/fisiologia , Inibição Psicológica , Monitorização Ambulatorial/métodos , Inibição Neural/fisiologia , Caminhada/fisiologia , Mapeamento Encefálico/instrumentação , Calibragem , Retroalimentação Fisiológica/fisiologia , Feminino , Humanos , Masculino , Monitorização Ambulatorial/instrumentação , Desempenho Psicomotor/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...