Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nature ; 584(7821): 415-419, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641829

RESUMO

Sexual dimorphism arises from genetic differences between male and female cells, and from systemic hormonal differences1-3. How sex hormones affect non-reproductive organs is poorly understood, yet highly relevant to health given the sex-biased incidence of many diseases4. Here we report that steroid signalling in Drosophila from the ovaries to the gut promotes growth of the intestine specifically in mated females, and enhances their reproductive output. The active ovaries of the fly produce the steroid hormone ecdysone, which stimulates the division and expansion of intestinal stem cells in two distinct proliferative phases via the steroid receptors EcR and Usp and their downstream targets Broad, Eip75B and Hr3. Although ecdysone-dependent growth of the female gut augments fecundity, the more active and more numerous intestinal stem cells also increase female susceptibility to age-dependent gut dysplasia and tumorigenesis, thus potentially reducing lifespan. This work highlights the trade-offs in fitness traits that occur when inter-organ signalling alters stem-cell behaviour to optimize organ size.


Assuntos
Drosophila melanogaster/metabolismo , Fertilidade/fisiologia , Intestinos/crescimento & desenvolvimento , Longevidade/fisiologia , Tamanho do Órgão/fisiologia , Ovário/metabolismo , Esteroides/metabolismo , Envelhecimento , Animais , Carcinogênese , Proliferação de Células , Copulação/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Ecdisona/metabolismo , Feminino , Mucosa Intestinal/anatomia & histologia , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/anatomia & histologia , Intestinos/citologia , Intestinos/patologia , Masculino , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
2.
Biol Reprod ; 99(2): 373-383, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481619

RESUMO

Epididymal sperm protein CRISP1 has the ability to both regulate murine CatSper, a key sperm calcium channel, and interact with egg-binding sites during fertilization. In spite of its relevance for sperm function, Crisp1-/-mice are fertile. Considering that phenotypes can be influenced by the genetic background, in the present work mice from the original mixed Crisp1-/- colony (129/SvEv*C57BL/6) were backcrossed onto the C57BL/6 strain for subsequent analysis of their reproductive phenotype. Whereas fertility and fertilization rates of C57BL/6 Crisp1-/- males did not differ from those reported for mice from the mixed background, several sperm functional parameters were clearly affected by the genetic background. Crisp1-/- sperm from the homogeneous background exhibited defects in both the progesterone-induced acrosome reaction and motility not observed in the mixed background, and normal rather than reduced protein tyrosine phosphorylation. Additional studies revealed a significant decrease in sperm hyperactivation as well as in cAMP and protein kinase A (PKA) substrate phosphorylation levels in sperm from both colonies. The finding that exposure of mutant sperm to a cAMP analog and phosphodiesterase inhibitor overcame the sperm functional defects observed in each colony indicated that a common cAMP-PKA signaling defect led to different phenotypes depending on the genetic background. Altogether, our observations indicate that the phenotype of CRISP1 null males is modulated by the genetic context and reveal new roles for the protein in both the functional events and signaling pathways associated to capacitation.


Assuntos
Fertilidade/genética , Fertilização/genética , Glicoproteínas de Membrana/genética , Reprodução/genética , Espermatozoides/metabolismo , Reação Acrossômica/efeitos dos fármacos , Reação Acrossômica/genética , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Patrimônio Genético , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Progesterona/farmacologia , Motilidade dos Espermatozoides/genética , Espermatozoides/efeitos dos fármacos
4.
Biol Reprod ; 85(3): 503-10, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21593480

RESUMO

Rat epididymal protein CRISP1 (cysteine-rich secretory protein 1) associates with sperm during maturation and participates in fertilization. Evidence indicates the existence of two populations of CRISP1 in sperm: one loosely bound and released during capacitation, and one strongly bound that remains after this process. However, the mechanisms underlying CRISP1 binding to sperm remain mostly unknown. Considering the high concentrations of Zn(2+) present in the epididymis, we investigated the potential involvement of this cation in the association of CRISP1 with sperm. Caput sperm were coincubated with epididymal fluid in the presence or absence of Zn(2+), and binding of CRISP1 to sperm was examined by Western blot analysis. An increase in CRISP1 was detected in sperm exposed to Zn(2+), but not if the cation was added with ethylenediaminetetra-acetic acid (EDTA). The same results were obtained using purified CRISP1. Association of CRISP1 with sperm was dependent on epididymal fluid and Zn(2+) concentrations and incubation time. Treatment with NaCl (0.6 M) removed the in vitro-bound CRISP1, indicating that it corresponds to the loosely bound population. Flow cytometry of caput sperm exposed to biotinylated CRISP1/avidin-fluorescein isothiocyanate revealed that only the cells incubated with Zn(2+) exhibited an increase in fluorescence. When these sperm were examined by epifluorescence microscopy, a clear staining in the tail, accompanied by a weaker labeling in the head, was observed. Detection of changes in the tryptophan fluorescence emission spectra of CRISP1 when exposed to Zn(2+) supported a direct interaction between CRISP1 and Zn(2+). Incubation of either cauda epididymal fluid or purified CRISP1 with Zn(2+), followed by native-PAGE and Western blot analysis, revealed the presence of high-molecular-weight CRISP1 complexes not detected in fluids treated with EDTA. Altogether, these results support the involvement of CRISP1-Zn(2+) complexes in the association of the loosely bound population of CRISP1 with sperm during epididymal maturation.


Assuntos
Epididimo/metabolismo , Glicoproteínas de Membrana/metabolismo , Espermatozoides/metabolismo , Zinco/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
5.
J Androl ; 32(6): 672-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21441424

RESUMO

Rat epididymal CRISP1, the first described member of the evolutionarily conserved Cysteine-RIch Secretory Protein (CRISP) family, is expressed in the proximal regions of the epididymis and associates with the sperm during epididymal transit. Evidence indicates the existence of 2 populations of CRISP1 in spermatozoa: a major one, loosely bound, which is released during capacitation and, therefore, proposed as a decapacitating factor; and a minor one, strongly associated with spermatozoa that remains on the cells after capacitation and is proposed to participate in gamete interaction. Originally localized to the dorsal region of capacitated sperm, CRISP1 migrates to the equatorial segment with capacitation and acrosome reaction. Consistent with these localizations, in vitro fertilization experiments support the involvement of CRISP1 in the first step of sperm-zona pellucida (ZP) interaction and subsequent gamete fusion through its interaction with egg-complementary sites. The potential roles of CRISP1 in capacitation and fertilization have been further supported by the finding that capacitated spermatozoa from CRISP1 "knockout" animals exhibit low levels of protein tyrosine phosphorylation and have an impaired ability to fertilize zona-intact and zona-free eggs in vitro. Moreover, recent evidence from mutant spermatozoa reveals that CRISP1 mediates the stage of sperm binding to the ZP. Altogether, these observations support the view that CRISP1 is a multifunctional protein playing different roles during fertilization through its different associations with and localizations on spermatozoa. We believe these results contribute to a better understanding of the molecular mechanisms involved in both the fertilization process and the acquisition of sperm-fertilizing ability that occurs during epididymal maturation.


Assuntos
Epididimo/metabolismo , Fertilização , Glicoproteínas de Membrana/metabolismo , Animais , Humanos , Masculino , Camundongos , Ratos , Capacitação Espermática , Interações Espermatozoide-Óvulo , Espermatozoides/metabolismo , Zona Pelúcida/metabolismo
6.
Biol Res ; 44(2): 135-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22513415

RESUMO

Epididymal protein CRISPI is a member of the CRISP (Cysteine-RIch Secretory proteins) family and is involved in sperm-egg fusion through its interaction with complementary sites on the egg surface. Results from our laboratory have shown that this binding ability resides in a 12-amino-acid region corresponding to a highly conserved motif of the CRISP family, named Signature 2 (S2). In addition to this, our results revealed that CRISP1 could also be involved in the previous step of sperm binding to the zona pellucida, identifying a novel role for this protein in fertilization. As another approach to elucidate the participation of CRISP1 in fertilization, a mouse line containing a targeted disruption of CRISP1 was generated. Although CRISP1-deficient mice exhibited normal fertility, CRISP1-defficient sperm presented a decreased level of protein tyrosine phosphorylation during capacitation, and an impaired ability to fertilize both zona-intact and zona-free eggs in vitro, confirming the proposed roles for the protein in fertilization. Evidence obtained in our laboratory indicated that testicular CRISP2 would also be involved in sperm-egg fusion. Competition assays between CRISP1 and CRISP2, as well as the comparison of their corresponding S2 regions, suggest that both proteins bind to common complementary sites in the egg. Together, these results suggest a functional cooperation between CRISP1 and CRISP2 to ensure the success of fertilization.


Assuntos
Glicoproteínas/fisiologia , Glicoproteínas de Membrana/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Zona Pelúcida/metabolismo , Animais , Moléculas de Adesão Celular , Feminino , Humanos , Masculino , Proteínas de Membrana , Camundongos
7.
Biol. Res ; 44(2): 135-138, 2011. ilus
Artigo em Inglês | LILACS | ID: lil-602968

RESUMO

Epididymal protein CRISPI is a member of the CRISP (Cysteine-RIch Secretory proteins) family and is involved in sperm-egg fusion through its interaction with complementary sites on the egg surface. Results from our laboratory have shown that this binding ability resides in a 12-amino-acid region corresponding to a highly conserved motif of the CRISP family, named Signature 2 (S2). In addition to this, our results revealed that CRISP1 could also be involved in the previous step of sperm binding to the zona pellucida, identifying a novel role for this protein in fertilization. As another approach to elucidate the participation of CRISP1 in fertilization, a mouse line containing a targeted disruption of CRISP1 was generated. Although CRISP1-deficient mice exhibited normal fertility, CRISP1-defficient sperm presented a decreased level of protein tyrosine phosphorylation during capacitation, and an impaired ability to fertilize both zona-intact and zona-free eggs in vitro, confirming the proposed roles for the protein in fertilization. Evidence obtained in our laboratory indicated that testicular CRISP2 would also be involved in sperm-egg fusion. Competition assays between CRISP1 and CRISP2, as well as the comparison of their corresponding S2 regions, suggest that both proteins bind to common complementary sites in the egg. Together, these results suggest a functional cooperation between CRISP1 and CRISP2 to ensure the success of fertilization.


Assuntos
Animais , Feminino , Humanos , Masculino , Camundongos , Glicoproteínas/fisiologia , Glicoproteínas de Membrana/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Zona Pelúcida/metabolismo
8.
Int J Dev Biol ; 52(5-6): 737-42, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18649285

RESUMO

Mammalian fertilization is a complex multi-step process mediated by different molecules present on both gametes. CRISP1 (cysteine-rich secretory protein 1) is an epididymal protein thought to participate in gamete fusion through its binding to egg-complementary sites. Structure-function studies using recombinant fragments of CRISP1 as well as synthetic peptides reveal that its egg-binding ability resides in a 12 amino acid region corresponding to an evolutionary conserved motif of the CRISP family, named Signature 2 (S2). Further experiments analyzing both the ability of other CRISP proteins to bind to the rat egg and the amino acid sequence of their S2 regions show that the amino acid sequence of the S2 is needed for CRISP1 to interact with the egg. CRISP1 appears to be involved in the first step of sperm binding to the zona pellucida, identifying a novel role for this protein in fertilization. The observation that sperm testicular CRISP2 is also able to bind to the egg surface suggests a role for this protein in gamete fusion. Subsequent experiments confirmed the participation of CRISP2 in this step of fertilization and revealed that CRISP1 and CRISP2 interact with common egg surface binding sites. Together, these results suggest a functional cooperation between CRISP1 and CRISP2 to ensure the success of fertilization. These observations contribute to a better understanding of the molecular mechanisms underlying mammalian fertilization.


Assuntos
Cisteína/química , Glicoproteínas/fisiologia , Glicoproteínas de Membrana/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Animais , Moléculas de Adesão Celular , Feminino , Cobaias , Humanos , Masculino , Proteínas de Membrana , Camundongos , Modelos Biológicos , Ligação Proteica , Ratos , Espermatozoides/fisiologia
9.
Dev Biol ; 320(1): 12-8, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18571638

RESUMO

Mammalian fertilization is a complex multi-step process mediated by different molecules present on both gametes. Epididymal protein CRISP1, a member of the Cysteine-RIch Secretory Protein (CRISP) family, was identified by our laboratory and postulated to participate in both sperm-zona pellucida (ZP) interaction and gamete fusion by binding to egg-complementary sites. To elucidate the functional role of CRISP1 in vivo, we disrupted the Crisp1 gene and evaluated the effect on animal fertility and several sperm parameters. Male and female Crisp1(-/-) animals exhibited no differences in fertility compared to controls. Sperm motility and the ability to undergo a spontaneous or progesterone-induced acrosome reaction were neither affected in Crisp1(-/-) mice. However, the level of protein tyrosine phosphorylation during capacitation was clearly lower in mutant sperm than in controls. In vitro fertilization assays showed that Crisp1(-/-) sperm also exhibited a significantly reduced ability to penetrate both ZP-intact and ZP-free eggs. Moreover, when ZP-free eggs were simultaneously inseminated with Crisp1(+/+) and Crisp1(-/-) sperm in a competition assay, the mutant sperm exhibited a greater disadvantage in their fusion ability. Finally, the finding that the fusion ability of Crisp1(-/-) sperm was further inhibited by the presence of CRISP1 or CRISP2 during gamete co-incubation, supports that another CRISP cooperates with CRISP1 during fertilization and might compensate for its lack in the mutant mice. Together, these results indicate that CRISP proteins are players in the mammalian fertilization process. To our knowledge this is the first knockout mice generated for a CRISP protein. The information obtained might have important functional implications for other members of the widely distributed and evolutionarily conserved CRISP family.


Assuntos
Fertilização/fisiologia , Glicoproteínas de Membrana/deficiência , Espermatozoides/fisiologia , Reação Acrossômica , Animais , Fertilidade , Marcação de Genes , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Capacitação Espermática
10.
Biol Reprod ; 79(3): 493-500, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18550793

RESUMO

Caltrin is a small and basic protein of the seminal vesicle secretion that inhibits sperm calcium uptake. The influence of rat caltrin on sperm physiological processes related to fertilizing competence was studied by examining its effect on 1) spontaneous acrosomal exocytosis, 2) protein tyrosine phosphorylation, and 3) sperm-egg interaction. Results show that the presence of caltrin during in vitro capacitation both reduced the rate of spontaneous acrosomal exocytosis without altering the pattern of protein tyrosine phosphorylation, and enhanced the sperm ability to bind to the zona pellucida (ZP). The significantly higher proportion of sperm with intact acrosome observed in the presence of caltrin was accompanied by a strong inhibition in the acrosomal hyaluronidase release. Enhancement of sperm-ZP binding was evident by the increase in the percentage of eggs with bound spermatozoa as well as in the number of bound sperm per egg. Similar results were obtained when the assays were performed using spermatozoa preincubated with caltrin and then washed to remove the unbound protein, indicating that the sperm-bound caltrin was the one involved in both acrosomal exocytosis inhibition and sperm-ZP binding enhancement. Caltrin bound to the sperm head was partially released during the acrosomal exocytosis induced by Ca-ionophore A23187. Indirect immunofluorescence and immunoelectron microscopy studies revealed that caltrin molecules distributed on the dorsal sperm surface disappeared after ionophore exposure, whereas those on the ventral region remained in this localization after the treatment. The present data suggest that rat caltrin molecules bound to the sperm head during ejaculation prevent the occurrence of the spontaneous acrosomal exocytosis along the female reproductive tract. Consequently, more competent spermatozoa with intact and functional acrosome would be available in the oviduct to participate in fertilization.


Assuntos
Acrossomo/metabolismo , Exocitose/fisiologia , Proteínas Secretadas pela Vesícula Seminal/fisiologia , Capacitação Espermática/fisiologia , Acrossomo/efeitos dos fármacos , Reação Acrossômica/efeitos dos fármacos , Animais , Exocitose/efeitos dos fármacos , Feminino , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Proteínas Secretadas pela Vesícula Seminal/farmacologia , Capacitação Espermática/efeitos dos fármacos , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Zona Pelúcida/metabolismo
11.
Fertil Steril ; 89(1): 199-205, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17482178

RESUMO

OBJECTIVE: To evaluate the immunocontraceptive properties of recombinant DE, a sperm epididymal protein involved in fertilization, via an experimental study in rats as a critical step toward the development of a human immunocontraceptive. DESIGN: In vivo study in rats. SETTING: Animal care facility of an academic research center. ANIMAL(S): Seventy-four 90-day-old Wistar male and female rats distributed into three groups. INTERVENTION(S): Animals received five injections (intramuscular and subcutaneous) of recombinant DE (recDE), native DE (nDE), or MBP (maltose-binding protein). At various times, animals were anesthetized and bled. MAIN OUTCOME MEASURE(S): Anti-DE levels and tissue specificity of sera were evaluated by enzyme-linked immunosorbent assay (ELISA) and Western blot, respectively. Fertility was analyzed by natural mating. The testes and epididymides were analyzed by histology. RESULT(S): Recombinant DE raised an immune response with the same kinetics and higher anti-DE levels than that elicited by nDE. Sera against recDE recognized epitopes of DE that were different from those recognized by anti-nDE sera but specifically reacted with DE in epididymis and sperm without cross-reacting with other tissues tested. Male and female recDE-injected animals presented a statistically significant reduction in their fertility with no evidence of pathologic effects. CONCLUSION(S): Recombinant DE is able to both elicit a specific immune response and inhibit male and female fertility, supporting the use of this sperm epididymal protein for the development of an immunocontraceptive approach.


Assuntos
Formação de Anticorpos/efeitos dos fármacos , Anticoncepção Imunológica , Anticoncepcionais/farmacologia , Proteínas Secretadas pelo Epidídimo/farmacologia , Fertilidade/efeitos dos fármacos , Glicoproteínas de Membrana/farmacologia , Animais , Anticorpos/sangue , Especificidade de Anticorpos , Anticoncepcionais/administração & dosagem , Anticoncepcionais/imunologia , Proteínas Secretadas pelo Epidídimo/administração & dosagem , Proteínas Secretadas pelo Epidídimo/imunologia , Feminino , Fertilidade/imunologia , Imunização , Injeções Intramusculares , Injeções Subcutâneas , Cinética , Masculino , Glicoproteínas de Membrana/administração & dosagem , Glicoproteínas de Membrana/imunologia , Ratos , Ratos Wistar , Proteínas Recombinantes/farmacologia
12.
Biol Reprod ; 77(5): 848-54, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17671267

RESUMO

Epididymal protein CRISP1 participates in rat and mouse gamete fusion through its interaction with complementary sites on the egg surface. Based on in vivo observations, in the present study we investigated the possibility that CRISP1 plays an additional role in the sperm-zona pellucida (ZP) interaction that precedes gamete fusion. In vitro fertilization experiments using zona-intact rat and mouse eggs indicated that the presence of either an antibody against rat CRISP1 (anti-CRISP1) or rat native CRISP1 (rCRISP1) during gamete co-incubation produced a significant decrease in the percentage of fertilized eggs. However, differently to that expected for a protein involved in gamete fusion, no accumulation of perivitelline sperm was observed, suggesting that the inhibitions occurred at the sperm-ZP interaction level. Bacterially expressed recombinant CRISP1 (recCRISP1) also significantly inhibited egg fertilization. In this case, however, an increase in the number of perivitelline sperm was observed. Subsequent experiments evaluating the effect of anti-CRISP1 or rCRISP1 on the number of sperm bound per egg indicated that the protein is involved in the initial step of sperm-ZP binding. In agreement with these functional studies, indirect immunofluorescence experiments revealed that although rCRISP1 is capable of binding to both the ZP and the oolema, recCRISP1 only binds to the egg surface. The finding that deglycosylated rCRISP1 behaves as the untreated protein, whereas the heat-denatured rCRISP1 associated only with the oolema, indicates that the protein ZP-binding ability resides in the conformation rather than in the glycosydic portion of the molecule. The interaction between rCRISP1 and the ZP reproduces the sperm-ZP-binding behavior, as judged by the failure of the protein to interact with the ZP of fertilized eggs. Together, these results support the idea that CRISP1 participates not only in sperm-egg fusion but also in the prior stage of sperm-ZP interaction.


Assuntos
Glicoproteínas de Membrana/fisiologia , Interações Espermatozoide-Óvulo , Espermatozoides/fisiologia , Zona Pelúcida/fisiologia , Animais , Feminino , Fertilização/efeitos dos fármacos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Zona Pelúcida/efeitos dos fármacos
13.
Asian J Androl ; 9(4): 528-32, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17589791

RESUMO

Rat protein DE is an androgen-dependent cysteine-rich secretory protein (CRISP) synthesized by proximal epididymal regions. DE, also known as CRISP-1, is localized on the equatorial segment of acrosome-reacted spermatozoa and participates in gamete fusion through binding to egg complementary sites. Immunization of rats with DE inhibits fertility and sperm fusion ability, suggesting that DE represents a good epididymal contraceptive target. Recombinant DE fragments and synthetic peptides revealed that DE binds to the egg via a 12-amino acid region of an evolutionarily conserved motif, Signature 2 (S2). The ability of other CRISP to bind to the rat egg was correlated with their S2 amino acid sequences. Although testicular protein Tpx-1 (CRISP-2) was capable of binding to rodent eggs, human epididymal AEG-related protein (ARP) and helothermine (from lizard saliva) were not. The S2 region presented only two substitutions in Tpx-1 and four in ARP and helothermine, compared with the DE S2, suggesting that this amino acid sequence was relevant for egg interaction. Studies with Tpx-1 and anti-Tpx-1 revealed the participation of this protein in gamete fusion through binding to complementary sites in the egg. In competition studies, DE reduced binding of Tpx-1 dose-dependently, indicating that both CRISP share the egg complementary sites. That anti-DE and anti-Tpx-1 inhibit sperm-egg fusion while recognizing only the corresponding proteins, suggests functional cooperation between these homologous CRISP to ensure fertilization success. These results increase our understanding of the molecular mechanisms of gamete fusion and contribute to the development of new and safer fertility regulating methods.


Assuntos
Óvulo/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/fisiologia , Animais , Moléculas de Adesão Celular , Fusão Celular , Epididimo , Feminino , Células Germinativas/fisiologia , Glicoproteínas/fisiologia , Humanos , Masculino , Glicoproteínas de Membrana/fisiologia , Ratos , Capacitação Espermática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...