Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Digit Health ; 4: 914171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148210

RESUMO

This paper describes the identification of body function (BF) mentions within the clinical text within a large, national, heterogeneous corpus to highlight structural challenges presented by the clinical text. BF in clinical documents provides information on dysfunction or impairments in the function or structure of organ systems or organs. BF mentions are embedded in highly formatted structures where the formats include implied scoping boundaries that confound existing natural language processing segmentation and document decomposition techniques. This paper describes follow-up work to adapt a rule-based system created using National Institutes of Health records to a larger, more challenging corpus of Social Security Administration data. Results of these systems provide a baseline for future work to improve document decomposition techniques.

2.
Int J Med Inform ; 147: 104351, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401169

RESUMO

BACKGROUND: Secondary use of Electronic Health Records (EHRs) has mostly focused on health conditions (diseases and drugs). Function is an important health indicator in addition to morbidity and mortality. Nevertheless, function has been overlooked in accessing patients' health status. The World Health Organization (WHO)'s International Classification of Functioning, Disability and Health (ICF) is considered the international standard for describing and coding function and health states. We pioneer the first comprehensive analysis and identification of functioning concepts in the Mobility domain of the ICF. RESULTS: Using physical therapy notes at the National Institutes of Health's Clinical Center, we induced a hierarchical order of mobility-related entities including 5 entities types, 3 relations, 8 attributes, and 33 attribute values. Two domain experts manually curated a gold standard corpus of 14,281 nested entity mentions from 400 clinical notes. Inter-annotator agreement (IAA) of exact matching averaged 92.3 % F1-score on mention text spans, and 96.6 % Cohen's kappa on attributes assignments. A high-performance Ensemble machine learning model for named entity recognition (NER) was trained and evaluated using the gold standard corpus. Average F1-score on exact entity matching of our Ensemble method (84.90 %) outperformed popular NER methods: Conditional Random Field (80.4 %), Recurrent Neural Network (81.82 %), and Bidirectional Encoder Representations from Transformers (82.33 %). CONCLUSIONS: The results of this study show that mobility functioning information can be reliably captured from clinical notes once adequate resources are provided for sequence labeling methods. We expect that functioning concepts in other domains of the ICF can be identified in similar fashion.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Registros Eletrônicos de Saúde , Humanos , Processamento de Linguagem Natural
3.
Artigo em Inglês | MEDLINE | ID: mdl-35694445

RESUMO

Background: Invaluable information on patient functioning and the complex interactions that define it is recorded in free text portions of the Electronic Health Record (EHR). Leveraging this information to improve clinical decision-making and conduct research requires natural language processing (NLP) technologies to identify and organize the information recorded in clinical documentation. Methods: We used natural language processing methods to analyze information about patient functioning recorded in two collections of clinical documents pertaining to claims for federal disability benefits from the U.S. Social Security Administration (SSA). We grounded our analysis in the International Classification of Functioning, Disability, and Health (ICF), and used the Activities and Participation domain of the ICF to classify information about functioning in three key areas: mobility, self-care, and domestic life. After annotating functional status information in our datasets through expert clinical review, we trained machine learning-based NLP models to automatically assign ICF categories to mentions of functional activity. Results: We found that rich and diverse information on patient functioning was documented in the free text records. Annotation of 289 documents for Mobility information yielded 2,455 mentions of Mobility activities and 3,176 specific actions corresponding to 13 ICF-based categories. Annotation of 329 documents for Self-Care and Domestic Life information yielded 3,990 activity mentions and 4,665 specific actions corresponding to 16 ICF-based categories. NLP systems for automated ICF coding achieved over 80% macro-averaged F-measure on both datasets, indicating strong performance across all ICF categories used. Conclusions: Natural language processing can help to navigate the tradeoff between flexible and expressive clinical documentation of functioning and standardizable data for comparability and learning. The ICF has practical limitations for classifying functional status information in clinical documentation but presents a valuable framework for organizing the information recorded in health records about patient functioning. This study advances the development of robust, ICF-based NLP technologies to analyze information on patient functioning and has significant implications for NLP-powered analysis of functional status information in disability benefits management, clinical care, and research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...