Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 7(6)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205316

RESUMO

Humulus lupulus L. is a long-lived, perennial, herbaceous, and dioecious climbing plant. The foremost producers in the European Union are Germany, the Czech Republic, Poland, Slovenia, and Spain. The Spanish cultivated area is concentrated in the province of León. Powdery mildew, caused by Podosphaera macularis, menaces hop production and quality in all hop growing regions located in the Northern hemisphere, colonizing leaves, petioles, inflorescences, and finally cones. In this work, powdery mildew control was monitored, comparing nine fungicide strategies: five organics, two integrated disease management (IDM)-based, with and without Nutragreen® nanoscale carrier, and two conventional treatments (CON) with and without Nutragreen® nanoscale carrier. The organic treatments were able to diminish P. macularis on leaves, but no effect was observed in cones. CON treatments reduced the infection on leaves and cones and increased the cone quantity and quality. Likewise, IDM-based treatments provided satisfactory results as they diminished powdery mildew on leaves and cones. Finally, dose reduction using a Nutragreen® nanoscale carrier showed beneficial effects in the control of powdery mildew compared to the commercial dose. Hence, the use of nanoscale carries permits a 30% reduction in pesticide dose, which optimizes yield and hop quality, reduces risks linked to pesticides, and aids in compliance with public and international policy demands.

2.
Front Microbiol ; 6: 266, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25904904

RESUMO

The effective management of Verticillium wilts (VW), diseases affecting many crops and caused by some species of the soil-borne fungus Verticillium, is problematic. The use of microbial antagonists to control these pathologies fits modern sustainable agriculture criteria. Pseudomonas fluorescens PICF7 is an endophytic bacterium isolated from olive roots with demonstrated ability to control VW of olive caused by the highly virulent, defoliating (D) pathotype of Verticillium dahliae Kleb. However, the study of the PICF7-V. dahliae-olive tripartite interaction poses difficulties because of the inherent characteristics of woody, long-living plants. To overcome these problems we explored the use of the model plant Arabidopsis thaliana. Results obtained in this study showed that: (i) olive D and non-defoliating V. dahliae pathotypes produce differential disease severity in A. thaliana plants; (ii) strain PICF7 is able to colonize and persist in the A. thaliana rhizosphere but is not endophytic in Arabidopsis; and (iii) strain PICF7 controls VW in Arabidopsis. Additionally, as previously observed in olive, neither swimming motility nor siderophore production by PICF7 are required for VW control in A. thaliana, whilst cysteine auxotrophy decreased the effectiveness of PICF7. Moreover, when applied to the roots PICF7 controlled Botrytis cinerea infection in the leaves of Arabidopsis, suggesting that this strain is able to induce systemic resistance. A. thaliana is therefore a suitable alternative to olive bioassays to unravel biocontrol traits involved in biological control of V. dahliae by P. fluorescens PICF7.

3.
Environ Microbiol ; 17(9): 3139-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25471384

RESUMO

Pseudomonas fluorescens PICF7 is an indigenous inhabitant of olive (Olea europaea L.) rhizosphere, able to display endophytic lifestyle in roots, to induce a wide range of defence responses upon colonization of this organ and to exert effective biological control against Verticillium wilt of olive (VWO) (Verticillium dahliae). We aimed to evaluate the involvement of specific PICF7 phenotypes in olive root colonization and VWO biocontrol effectiveness by generating mutants impaired in swimming motility (fliI) or siderophore pyoverdine production (pvdI). Besides, the performance of mutants with diminished in vitro growth in potato dextrose agar medium (gltA) and cysteine (Cys) auxotrophy was also assessed. Results showed that olive root colonization and VWO biocontrol ability of the fliI, pvdI and gltA mutants did not significantly differ from that displayed by the parental strain PICF7. Consequently, altered in vitro growth, swimming motility and pyoverdine production contribute neither to PICF7 VWO suppressive effect nor to its colonization ability. In contrast, the Cys auxotroph mutant showed reduced olive root colonization capacity and lost full biocontrol efficacy. Moreover, confocal laser scanning microscopy revealed that all mutants tested were able to endophytically colonize root tissue to the same extent as wild-type PICF7, discarding these traits as relevant for its endophytic lifestyle.


Assuntos
Antibiose , Agentes de Controle Biológico , Olea/microbiologia , Oligopeptídeos/biossíntese , Pseudomonas fluorescens/fisiologia , Verticillium/crescimento & desenvolvimento , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Cisteína/metabolismo , Oligopeptídeos/genética , Fenótipo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , ATPases Translocadoras de Prótons/biossíntese , ATPases Translocadoras de Prótons/genética , Rizosfera , Sideróforos/biossíntese , Sideróforos/genética
4.
Microb Biotechnol ; 6(3): 275-87, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23425069

RESUMO

Olive knot disease, caused by Pseudomonas savastanoi pv. savastanoi, is one of the most important biotic constraints for olive cultivation. Pseudomonas fluorescens PICF7, a natural colonizer of olive roots and effective biological control agent (BCA) against Verticillium wilt of olive, was examined as potential BCA against olive knot disease. Bioassays using in vitro-propagated olive plants were carried out to assess whether strain PICF7 controlled knot development either when co-inoculated with the pathogen in stems or when the BCA (in roots) and the pathogen (in stems) were spatially separated. Results showed that PICF7 was able to establish and persist in stem tissues upon artificial inoculation. While PICF7 was not able to suppress disease development, its presence transiently decreased pathogen population size, produced less necrotic tumours, and sharply altered the localization of the pathogen in the hyperplasic tissue, which may pose epidemiological consequences. Confocal laser scanning microscopy combined with fluorescent tagging of bacteria revealed that when PICF7 was absent the pathogen tended to be localized at the knot surface. However, presence of the BCA seemed to confine P. savastanoi at inner regions of the tumours. This approach has also enabled to prove that the pathogen can moved systemically beyond the hypertrophied tissue.


Assuntos
Endófitos/crescimento & desenvolvimento , Olea/microbiologia , Controle Biológico de Vetores , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , Pseudomonas fluorescens/crescimento & desenvolvimento , Pseudomonas/patogenicidade , Antibiose , Microbiologia Industrial , Microscopia Confocal , Olea/ultraestrutura , Doenças das Plantas/microbiologia , Pseudomonas/classificação , Pseudomonas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...