Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(6): 2027-2043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38391415

RESUMO

Understanding the regulation of flowering time is crucial for adaptation of crops to new environment. In this study, we examined the timing of floral transition and analysed transcriptomes in leaf and shoot apical meristems of photoperiod-sensitive and -insensitive quinoa accessions. Histological analysis showed that floral transition in quinoa initiates 2-3 weeks after sowing. We found four groups of differentially expressed genes in quinoa genome that responded to plant development and floral transition: (i) 222 genes responsive to photoperiod in leaves, (ii) 1812 genes differentially expressed between accessions under long-day conditions in leaves, (iii) 57 genes responding to developmental changes under short-day conditions in leaves and (iv) 911 genes responding to floral transition within the shoot apical meristem. Interestingly, among numerous candidate genes, two putative FT orthologs together with other genes (e.g. SOC1, COL, AP1) were previously reported as key regulators of flowering time in other species. Additionally, we used coexpression networks to associate novel transcripts to a putative biological process based on the annotated genes within the same coexpression cluster. The candidate genes in this study would benefit quinoa breeding by identifying and integrating their beneficial haplotypes in crossing programs to develop adapted cultivars to diverse environmental conditions.


Assuntos
Chenopodium quinoa , Regulação da Expressão Gênica de Plantas , Meristema , Fotoperíodo , Folhas de Planta , Transcriptoma , Chenopodium quinoa/genética , Chenopodium quinoa/crescimento & desenvolvimento , Chenopodium quinoa/fisiologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Transcriptoma/genética , Flores/genética , Flores/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
2.
Front Plant Sci ; 13: 916067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812962

RESUMO

Quinoa is a pseudocereal originating from the Andean regions. Despite quinoa's long cultivation history, genetic analysis of this crop is still in its infancy. We aimed to localize quantitative trait loci (QTL) contributing to the phenotypic variation of agronomically important traits. We crossed the Chilean accession PI-614889 and the Peruvian accession CHEN-109, which depicted significant differences in days to flowering, days to maturity, plant height, panicle length, and thousand kernel weight (TKW), saponin content, and mildew susceptibility. We observed sizeable phenotypic variation across F2 plants and F3 families grown in the greenhouse and the field, respectively. We used Skim-seq to genotype the F2 population and constructed a high-density genetic map with 133,923 single nucleotide polymorphism (SNPs). Fifteen QTL were found for ten traits. Two significant QTL, common in F2 and F3 generations, depicted pleiotropy for days to flowering, plant height, and TKW. The pleiotropic QTL harbored several putative candidate genes involved in photoperiod response and flowering time regulation. This study presents the first high-density genetic map of quinoa that incorporates QTL for several important agronomical traits. The pleiotropic loci can facilitate marker-assisted selection in quinoa breeding programs.

3.
Plant Cell Environ ; 44(8): 2565-2579, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33878205

RESUMO

Response to photoperiod is of major importance in crop production. It defines the adaptation of plants to local environments. Quinoa is a short-day plant which had been domesticated in the Andeans regions. We wanted to understand the adaptation to long-day conditions by studying orthologues of two major flowering time regulators of Arabidopsis, FLOWERING LOCUS T (FT) and CONSTANS (CO) in quinoa accessions with contrasting photoperiod response. By searching the quinoa reference genome sequence, we identified 24 FT and six CO homologs. CqFT genes displayed remarkably different expression patterns between long- and short-day conditions, whereas the influence of the photoperiod on CqCOL expressions was moderate. Cultivation of 276 quinoa accessions under short- and long-day conditions revealed great differences in photoperiod sensitivity. After sequencing their genomes, we identified large sequence variations in 12 flowering time genes. We found non-random distribution of haplotypes across accessions from different geographical origins, highlighting the role of CqFT and CqCOL genes in the adaptation to different day-length conditions. We identified five haplotypes causing early flowering under long days. This study provides assets for quinoa breeding because superior haplotypes can be assembled in a predictive breeding approach to produce well-adapted early flowering lines under long-day photoperiods.


Assuntos
Adaptação Biológica/genética , Chenopodium quinoa/fisiologia , Flores/fisiologia , Haplótipos , Proteínas de Plantas/genética , Chenopodium quinoa/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Fotoperíodo , Filogenia
4.
PLoS One ; 16(3): e0233821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33705394

RESUMO

Quinoa depicts high nutritional quality and abiotic stress resistance, attracting strong interest in the last years. To unravel the function of candidate genes for agronomically relevant traits, studying their transcriptional activities by RT-qPCR is an important experimental approach. The accuracy of such experiments strongly depends on precise data normalization. To date, validation of potential candidate genes for normalization of diurnal expression studies has not been performed in C. quinoa. We selected eight candidate genes based on transcriptome data and literature survey, including conventionally used reference genes. We used three statistical algorithms (BestKeeper, geNorm and NormFinder) to test their stability and added further validation by a simulation-based strategy. We demonstrated that using different reference genes, including those top ranked by stability, causes significant differences among the resulting diurnal expression patterns. Our results show that isocitrate dehydrogenase enzyme (IDH-A) and polypyrimidine tract-binding protein (PTB) are suitable genes to normalize diurnal expression data of two different quinoa accessions. Moreover, we validated our reference genes by normalizing two known diurnally regulated genes, BTC1 and BBX19. The validated reference genes obtained in this study will improve the accuracy of RT-qPCR data normalization and facilitate gene expression studies in quinoa.


Assuntos
Chenopodium quinoa/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Algoritmos , Chenopodium quinoa/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Proteínas de Plantas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...