Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Heliyon ; 9(5): e15740, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153389

RESUMO

The hydropower Plant in Terengganu is one of the major hydroelectric dams currently operated in Malaysia. For better operating and scheduling, accurate modelling of natural inflow is vital for a hydroelectric dam. The rainfall-runoff model is among the most reliable models in predicting the inflow based on the rainfall events. Such a model's reliability depends entirely on the reliability and consistency of the rainfall events assessed. However, due to the hydropower plant's remote location, the cost associated with maintaining the installed rainfall stations became a burden. Therefore, the study aims to create a continuous set of rainfall data before, during, and after the construction of a hydropower plant and simulate a rainfall-runoff model for the area. It also examines the reliability of alternative methods by combining rainfall data from two sources: the general circulation model and tropical rainfall measuring mission. Rainfall data from ground stations and generated data using inverse distance weighted method will be compared. The statistical downscaling model will obtain regional rainfall from the general circulation model. The data will be divided into three stages to evaluate the accuracy of the models in capturing inflow changes. The results revealed that rainfall data from TRMM is more correlated to ground station data with R2 = 0.606, while SDSM data has R2 = 0.592. The proposed inflow model based on GCM-TRMM data showed higher precision compared to the model using ground station data. The proposed model consistently predicted inflow during three stages with R2 values ranging from 0.75 to 0.93.

3.
Environ Sci Pollut Res Int ; 29(4): 4958-4990, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34807385

RESUMO

Rapid progress of industrial development, urbanization and traffic has caused air quality reduction that negatively affects human health and environmental sustainability, especially among developed countries. Numerous studies on the development of air quality forecasting model using machine learning have been conducted to control air pollution. As such, there are significant numbers of reviews on the application of machine learning in air quality forecasting. Shallow architectures of machine learning exhibit several limitations and yield lower forecasting accuracy than deep learning architecture. Deep learning is a new technology in computational intelligence; thus, its application in air quality forecasting is still limited. This study aims to investigate the deep learning applications in time series air quality forecasting. Owing to this, literature search is conducted thoroughly from all scientific databases to avoid unnecessary clutter. This study summarizes and discusses different types of deep learning algorithms applied in air quality forecasting, including the theoretical backgrounds, hyperparameters, applications and limitations. Hybrid deep learning with data decomposition, optimization algorithm and spatiotemporal models are also presented to highlight those techniques' effectiveness in tackling the drawbacks of individual deep learning models. It is clearly stated that hybrid deep learning was able to forecast future air quality with higher accuracy than individual models. At the end of the study, some possible research directions are suggested for future model development. The main objective of this review study is to provide a comprehensive literature summary of deep learning applications in time series air quality forecasting that may benefit interested researchers for subsequent research.


Assuntos
Poluição do Ar , Aprendizado Profundo , Previsões , Humanos , Redes Neurais de Computação , Fatores de Tempo
4.
Environ Monit Assess ; 193(7): 405, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110509

RESUMO

The massive destruction and loss caused by the 2004 Sumatra-Andaman tsunami were attributed to the lack of knowledge on tsunami and low regional detection and communication systems for early warning in that region. This study aimed to identify locations at risk of impending tsunami from Andaman Sea for the safety of community and proper development planning at the coastal areas by providing an updated and revised inundation maps. The last study on this area was conducted several years ago which open the possibility to new findings. Generated by tsunami simulation models, the maps illustrate the extent and level of inundation to which the coastal community and infrastructure would be subjected. As a result of coastal changes and availability of better topographic data, the existing inundation maps for the coastal areas of northwest Peninsular Malaysia at risk to impending tsunami from the Andaman Sea are revised. This paper documented the computational setup leading to the generation of the revised inundation maps. The tsunami simulation model TUNA was used to simulate the generation, propagation, and subsequent run-up and inundation of tsunamis triggered by earthquakes of moment magnitudes (Mw) 8.5, 9.0, and 9.25 along the Sunda Trench. From the simulations, it was found that at Mw 9.25, Balik Pulau, Pulau Pinang would be subjected to inundation of as far as 3.47 km with 5.40-m-deep inundation at the highest section.


Assuntos
Terremotos , Tsunamis , Monitoramento Ambiental , Indonésia , Malásia
5.
Environ Sci Pollut Res Int ; 28(32): 44264-44276, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33847888

RESUMO

Deforestation and forest degradation are among the leading global concerns, as they could reduce the carbon sink and sequestration potential of the forest. The impoundment of Kenyir River, Hulu Terengganu, Malaysia, in 1985 due to the development of hydropower station has created a large area of water bodies following clearance of forested land. This study assessed the loss of forest carbon due to these activities within the period of 37 years, between 1972 and 2019. The study area consisted of Kenyir Lake catchment area, which consisted mainly of forests and the great Kenyir Lake. Remote sensing datasets have been used in this analysis. Satellite images from Landsat 1-5 MSS and Landsat 8 OLI/TRIS that were acquired between the years 1972 and 2019 were used to classify land uses in the entire landscape of Kenyir Lake catchment. Support vector machine (SVM) was adapted to generate the land-use classification map in the study area. The results show that the total study area includes 278,179 ha and forest covers dominated the area for before and after the impoundment of Kenyir Lake. The assessed loss of carbon between the years 1972 and 2019 was around 8.6 million Mg C with an annual rate of 0.36%. The main single cause attributing to the forest loss was due to clearing of forest for hydro-electric dam construction. However, the remaining forests surrounding the study area are still able to sequester carbon at a considerable rate and thus balance the carbon dynamics within the landscapes. The results highlight that carbon sequestration scenario in Kenyir Lake catchment area shows the potential of the carbon sink in the study area are acceptable with only 17% reduction of sequestration ability. The landscape of the study area is considered as highly vegetated area despite changes due to dam construction.


Assuntos
Carbono , Florestas , Carbono/análise , Sequestro de Carbono , Conservação dos Recursos Naturais , Malásia , Rios
6.
Sci Rep ; 10(1): 4684, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170078

RESUMO

In nature, streamflow pattern is characterized with high non-linearity and non-stationarity. Developing an accurate forecasting model for a streamflow is highly essential for several applications in the field of water resources engineering. One of the main contributors for the modeling reliability is the optimization of the input variables to achieve an accurate forecasting model. The main step of modeling is the selection of the proper input combinations. Hence, developing an algorithm that can determine the optimal input combinations is crucial. This study introduces the Genetic algorithm (GA) for better input combination selection. Radial basis function neural network (RBFNN) is used for monthly streamflow time series forecasting due to its simplicity and effectiveness of integration with the selection algorithm. In this paper, the RBFNN was integrated with the Genetic algorithm (GA) for streamflow forecasting. The RBFNN-GA was applied to forecast streamflow at the High Aswan Dam on the Nile River. The results showed that the proposed model provided high accuracy. The GA algorithm can successfully determine effective input parameters in streamflow time series forecasting.

7.
Biotechnol Biofuels ; 12: 252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31666807

RESUMO

BACKGROUND: The extraction of lipids from microalgae requires a pretreatment process to break the cell wall and subsequent extraction processes to obtain the lipids for biofuels production. The multistep operation tends to incur high costs and are energy intensive due to longer process operations. This research work applies the combination of radicals from hydrogen peroxide with an organic solvent as a chemical pretreatment method for disrupting the cell wall of microalgae and simultaneously extracting lipids from the biomass in a one-step biphasic solution. RESULT: Several parameters which can affect the biphasic system were analyzed: contact time, volume of solvent, volume ratio, type of organic solvent, biomass amount and concentration of solvents, to extract the highest amount of lipids from microalgae. The results were optimized and up to 83.5% of lipid recovery yield and 94.6% of enhancement was successfully achieved. The results obtain from GC-FID were similar to the analysis of triglyceride lipid standard. CONCLUSION: The profound hybrid biphasic system shows great potential to radically disrupt the cell wall of microalgae and instantaneously extract lipids in a single-step approach. The lipids extracted were tested to for its comparability to biodiesel performance.

8.
Biotechnol Biofuels ; 12: 191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31384298

RESUMO

BACKGROUND: Microalgae are one of the promising feedstock that consists of high carbohydrate content which can be converted into bioethanol. Pre-treatment is one of the critical steps required to release fermentable sugars to be used in the microbial fermentation process. In this study, the reducing sugar concentration of Chlorella species was investigated by pre-treating the biomass with dilute sulfuric acid and acetic acid at different concentrations 1%, 3%, 5%, 7%, and 9% (v/v). RESULTS: 3,5-Dinitrosalicylic acid (DNS) method, FTIR, and GC-FID were employed to evaluate the reducing sugar concentration, functional groups of alcohol bonds and concentration of bioethanol, respectively. The two-way ANOVA results (p < 0.05) indicated that there was a significant difference in the concentration and type of acids towards bioethanol production. The highest bioethanol yield obtained was 0.28 g ethanol/g microalgae which was found in microalgae sample pre-treated with 5% (v/v) sulfuric acid while 0.23 g ethanol/g microalgal biomass was presented in microalgae sample pre-treated with 5% (v/v) acetic acid. CONCLUSION: The application of acid pre-treatment on microalgae for bioethanol production will contribute to higher effectiveness and lower energy consumption compared to other pre-treatment methods. The findings from this study are essential for the commercial production of bioethanol from microalgae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...