Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 20(3): 585-600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38153634

RESUMO

Type 1 diabetes mellitus (T1DM) is an autoimmune disease that destroys insulin-producing pancreatic ß-cells. Insulin replacement therapy is currently the mainstay of treatment for T1DM; however, treatment with insulin does not ameliorate disease progression, as dysregulated immune response and inflammation continue to cause further pancreatic ß-cell degradation. Therefore, shifting therapeutic strategies toward immunomodulating approaches could be effective to prevent and reverse disease progression. Different immune-modulatory therapies could be used, e.g., monoclonal-based immunotherapy, mesenchymal stem cell, and immune cell therapy. Since immune-modulatory approaches could have a systemic effect on the immune system and cause toxicity, more specific treatment options should target the immune response against pancreatic ß-cells. In this regard, chimeric antigen receptor (CAR)-based immunotherapy could be a promising candidate for modulation of dysregulated immune function in T1DM. CAR-based therapy has previously been approved for a number of hematologic malignancies. Nevertheless, there is renewed interest in CAR T cells' " off-the-shelf " treatment for T1DM. Several pre-clinical studies demonstrated that redirecting antigen-specific CAR T cells, especially regulatory CAR T cells (CAR Tregs), toward the pancreatic ß-cells, could prevent diabetes onset and progression in diabetic mice models. Here, we aim to review the current progress of CAR-based immune-cell therapy for T1DM and the corresponding challenges, with a special focus on designing CAR-based immunomodulatory strategies to improve its efficacy in the treatment of T1DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Insulinas , Receptores de Antígenos Quiméricos , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Diabetes Mellitus Tipo 1/terapia , Progressão da Doença
2.
Expert Rev Vaccines ; 21(10): 1377-1394, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35986451

RESUMO

INTRODUCTION: Since its emergence, there have been huge efforts to design vaccines against coronavirus disease 2019 (COVID-19) to inhibit its interpersonal spread. Global vaccine development is the most promising cost-effective method for overcoming the epidemic. However, following reports of post-vaccination thromboembolic adverse effects, there have been raising concerns about the safety profile of the COVID-19 vaccine. AREAS COVERED: We aimed to review the recent Food and Drug Administration (FDA)-approved vaccines and identify the organ-based major complications of COVID-19 vaccines based on reliable published studies. To find high-quality and large-scale observational, clinical trial, and cohort studies, PubMED, Scholar, Embase, and Web of Science were searched using keywords: COVID-19, SARS-CoV-2, vaccine, Pfizer (BNT162b2), Johnson and Johnson (Ad26.COV2), Moderna (mRNA-1273), Oxford AstraZeneca (ChAdOx1nCoV19), Coronavac (Sinovac), BBIBP-CorV (Sinopharm), adverse effect, and complication. To include all relevant articles, backward searching was also done on similar article citations. Case reports, studies including less than 10 participants, and biased articles were excluded. EXPERT OPINION: Based on data from high-quality and population-based studies, major adverse effects are divided into four major organ-specific groups, including cardiovascular, neurologic, hematologic, and immune-allergic side effects. The incidence of most of these side effects is not different between vaccinated and normal populations, and currently, the benefits of vaccination against COVID-19 are greater than the mortality and morbidity risks of COVID-19 infection. However, further studies, specifically systematic review and meta-analysis, are still indicated to investigate further unknown side effects of these vaccines and the existence of causality between the vaccine and reported adverse events.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Humanos , SARS-CoV-2 , Estados Unidos , Vacinação
3.
J Mol Endocrinol ; 69(3): R125-R150, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900847

RESUMO

Coronavirus disease 2019 (COVID-19) is well known for its respiratory complications; however, it can also cause extrapulmonary manifestations, including cardiovascular, thrombotic, renal, gastrointestinal, neurologic, and endocrinological symptoms. Endocrinological complications of COVID-19 are rare but can considerably impact the outcome of the patients. Moreover, preexisting endocrinologic disorders can affect the severity of COVID-19. Thyroid, pancreas, adrenal, neuroendocrine, gonadal, and parathyroid glands are the main endocrinologic organs that can be targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Endocrinological complications of COVID-19 are rare but can significantly deteriorate the patients' prognosis. Understanding the interaction between COVID-19 and the endocrine system can provide a potential treatment option to improve the outcome of COVID-19. In this article, we aim to review the short-term and long-term organ-based endocrinological complications of COVID-19, the pathophysiology, the influence of each complication on COVID-19 prognosis, and potential therapeutic interventions based on current published data. Moreover, current clinical trials of potential endocrinological interventions to develop therapeutic strategies for COVID-19 have been discussed.


Assuntos
COVID-19 , Glândulas Endócrinas , COVID-19/complicações , Humanos , Sistema Nervoso , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...