Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649638

RESUMO

Reactivation of the fetal hemoglobin (HbF) in adult erythroid cells via genome editing is a strategy for the treatment of ß-thalassemia and sickle cell disease. In related reports, the reactivation of HbF is regularly examined in erythroblasts which are generated from the adult CD34+ hematopoietic stem and progenitor cells (HSPCs). However, the procurement of adult HSPCs, either from the bone-marrow (BM) or from mobilized peripheral-blood (mPB), is difficult. Cord-blood (CB) is a readily available source of HSPCs. CB-HSPCs, however, produce high quantities of HbF following differentiation into the erythroid lineage-a potential drawback in such studies. Here, we have edited the BCL11A enhancer (a well-characterized HbF-quantitative trait loci or QTL) via CRISPR/Cas9 in order to determine whether HbF reactivation could be detected in CB-HSPC-derived erythroblasts. In the edited erythroblasts, insertion/deletion (indel) frequencies of 74.0-80.4% and BCL11A RNA reduction levels of 92.6 ± 5.1% (P < 0.0001) were obtained. In turn, the γ/ß-globin transcript ratios were increased from 11.3 ± 1.1-fold to 77.1 ± 2.0-fold, i.e., by 6.8-fold (P < 0.0001)-and the HbF% levels increased from 34.3% in the control population to 43.5% in the BCL11A edited erythroblasts. Our results suggest that γ-globin/HbF reactivation via genome editing can be detected in CB-HSPCs generated erythroblasts-rendering CB-HSPCs a useful model for similar studies.

2.
Sci Rep ; 13(1): 21180, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040898

RESUMO

Enzyme therapy can be an appropriate treatment option for celiac disease (CeD). Here, we developed Bromelain-Loaded Nanocomposites (BLNCs) to improve the stability and retention of bromelain enzyme activity. After the characterization of BLNCs, the cytotoxicity of BLNCs was determined on the Caco-2 cell line. The effect of BLNCs on gliadin degradation and the production of pro-inflammatory cytokines and anti-inflammatory molecules in peripheral blood mononuclear cells (PBMCs) obtained from celiac patients were assessed. Furthermore, the expression of CXCR3 and CCR5 genes was measured in CaCo-2 cells treated with gliadin, gliadin-digested with BLNCs, and bromelain. Our study demonstrated that the Bromelain entrapment efficiency in these nanoparticles was acceptable, and BLNCs have no toxic effect on cells. SDS-PAGE confirmed the digestion effect of bromelain released from nanocomposites. When Caco-2 cells were treated with gliadin digested by free bromelain and BLNCs, the expression of CXCR3 and CCR5 genes was significantly decreased. PBMCs of celiac patients treated with Bromelain and BLNCs decreased inflammatory cytokines (IL-1ß, IL-6, TNF-α, and IFN-γ) production compared to untreated PBMCs. This treatment also increased IL-10 and CTLA-4 in PBMCs of CeD patients. According to the promising results of this study, we can hope for the therapeutic potential of BLNCs for CeD.


Assuntos
Doença Celíaca , Gliadina , Humanos , Células CACO-2 , Gliadina/metabolismo , Leucócitos Mononucleares/metabolismo , Bromelaínas/farmacologia , Citocinas/metabolismo , Doença Celíaca/tratamento farmacológico , Doença Celíaca/metabolismo
3.
Amino Acids ; 55(11): 1601-1619, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37803248

RESUMO

Enzyme therapy for celiac disease (CeD), which digests gliadin into non-immunogenic and non-toxic peptides, can be an appropriate treatment option for CeD. Here, we have investigated the effectiveness of bromelain and ficin on gliadin digestion using in vitro, such as SDS-PAGE, HPLC, and circular dichroism (CD). Furthermore, the cytotoxicity of gliadin and 19-mer peptide before and after digestion with these enzymes was evaluated using the MTT assay in the Caco-2 cell line. Finally, we examined the effect of these treatments along with Larazotide Acetate on the expression of genes involved in cell-tight junctions, such as Occludin, Claudin 3, tight junction protein-1, and Zonulin in the Caco-2 cell line. Our study demonstrated bromelain and ficin digestion effects on the commercial and wheat-extracted gliadin by SDS-PAGE, HPLC, and CD. Also, the cytotoxicity results on Caco-2 showed that toxicity of the gliadin and synthetic 19-mer peptide was decreased by adding bromelain and ficin. Furthermore, the proteolytic effects of bromelain and ficin on gliadin indicated the expression of genes involved in cell-tight junctions was improved. This study confirms that bromelain and ficin mixture could be effective in improving the symptoms of CeD.


Assuntos
Doença Celíaca , Gliadina , Humanos , Células CACO-2 , Gliadina/farmacologia , Gliadina/metabolismo , Junções Íntimas , Ficina , Bromelaínas/farmacologia , Peptídeos/farmacologia
4.
Cell Biol Int ; 47(11): 1767-1781, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37671447

RESUMO

Breast cancer is a commonly known cancer type and the leading cause of cancer death among females. One of the unresolved problems in cancer treatment is the increased resistance of the tumor to existing treatments, which is a direct result of apoptotic defects. Calculating an alternative to cell death (autophagy) may be the ultimate solution to maximizing cancer cell death. Our aim in this study was to investigate the potential of free nanoparticles (un-drug-loaded) in the induction or inhibition of autophagy and consider this effect on the therapy process. When the studies met the inclusion criteria, the full texts of all relevant articles were carefully examined and classified. Of the 25 articles included in the analysis, carried out on MCF-7, MDA-MB-231, MDA-MB-231-TXSA, MDA-MB-468, SUM1315, and 4T1 cell lines. Twenty in vitro studies and five in vivo/in vitro studies applied five different autophagy tests: Acridine orange, western blot, Cyto-ID Autophagy Detection Kit, confocal microscope, and quantitative polymerase chain reaction. Nanoparticles (NPs) in the basic format, including Ag, Au, Y2 O3 , Se, ZnO, CuO, Al, Fe, vanadium pentoxide, and liposomes, were prepared in the included articles. Three behaviors of NPs related to autophagy were seen: induction, inhibition, and no action. Screened and presented data suggest that most of the involved free NPs (metallic NPs) in this systematic review had reactive oxygen species-mediated pathways with autophagy induction (36%). Also, PI3K/Akt/mTOR and MAPK/ERK signaling pathways were mentioned in just four studies (16%). An impressive percentage of studies (31%) did not examine the NP-related autophagy pathway.

5.
Int J Pept Res Ther ; 29(1): 5, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36466430

RESUMO

In spite of existing cases of severe viral infections with a high mortality rate, there are not enough antiviral drugs and vaccines available for the prevention and treatment of such diseases. In addition, the increasing reports of the emergence of viral epidemics highlight, the need for novel molecules with antiviral potential. Antimicrobial peptides (AMPs) with antiviral activity or antiviral peptides (AVPs) have turned into a research hotspot and already show tremendous potential to become pharmaceutically available antiviral medicines. AMPs, a diverse group of bioactive peptides act as a part of our first line of defense against pathogen inactivation. Although most of the currently reported AMPs are either antibacterial or antifungal peptides, the number of antiviral peptides is gradually increasing. Some of the AMPs that are shown as effective antivirals have been deployed against viruses such as influenza A virus, severe acute respiratory syndrome coronavirus (SARS-CoV), HIV, HSV, West Nile Virus (WNV), and other viruses. This review offers an overview of AVPs that have been approved within the past few years and will set out a few of the most essential patents and their usage within the context mentioned above during 2000-2020. Moreover, the present study will explain some of the progress in antiviral drugs based on peptides and peptide-related antivirals.

6.
J Biomed Phys Eng ; 12(6): 583-590, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36569563

RESUMO

Background: Postoperative infection in Coronary Artery Bypass Graft (CABG) is one of the most common complications for diabetic patients, due to an increase in the hospitalization and cost. To address these issues, it is necessary to apply some solutions. Objective: The study aimed to the development of a Clinical Decision Support System (CDSS) for predicting the CABG postoperative infection in diabetic patients. Material and Methods: This developmental study is conducted on a private hospital in Tehran in 2016. From 1061 CABG surgery medical records, we selected 210 cases randomly. After data gathering, we used statistical tests for selecting related features. Then an Artificial Neural Network (ANN), which was a one-layer perceptron network model and a supervised training algorithm with gradient descent, was constructed using MATLAB software. The software was then developed and tested using the receiver operating characteristic (ROC) diagram and the confusion matrix. Results: Based on the correlation analysis, from 28 variables in the data, 20 variables had a significant relationship with infection after CABG (P<0.05). The results of the confusion matrix showed that the sensitivity of the system was 69%, and the specificity and the accuracy were 97% and 84%, respectively. The Receiver Operating Characteristic (ROC) diagram shows the appropriate performance of the CDSS. Conclusion: The use of CDSS can play an important role in predicting infection after CABG in patients with diabetes. The designed software can be used as a supporting tool for physicians to predict infections caused by CABG in diabetic patients as a susceptible group. However, other factors affecting infection must also be considered for accurate prediction.

7.
Microb Pathog ; 173(Pt A): 105866, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36336133

RESUMO

BACKGROUND: With the emergence of drug-resistant fungi and the increased population prone to fungal infections, more effective antifungal drugs are needed. Aurein 1.2 is a potent antimicrobial peptide. Here, we designed a novel derivative of Aurein 1.2, called Aurein N3, which is a modified form of Aurein N2 (another Aurein 1.2 derivative), in which Lys 8 residue was replaced with Leu 13, and was also modified by creating two other mutations. METHODS: Aurein N3 was designed using several algorithms and docking studies. All peptides were synthesized and some of their bio-activity indices such as antifungal properties on 11 fungi, cytotoxicity, hemolysis, and time of the killing were investigated. Electron microscopy, lived/dead staining, and ergosterol binding assay were performed to study their mechanism of action. RESULTS: In comparison to Aurein 1.2 and N2, the docking studies showed that Aurein N3 has reduced binding energy toward ergosterol. The antifungal assessments showed that both Aurein N2 and N3 had strong activity against many fungi. Aurein N3 had lower cytotoxicity and higher binding capability to ergosterol. The hemolytic activity of Aurein N2 and N3 was less than parental Aurein 1.2. All peptides were able to attack the cell wall/membrane and enter the fungi cells. CONCLUSION: Here we introduced a novel derivative of Aurein 1.2 which has lower cytotoxicity, higher ergosterol-binding capability, and comparable antifungal activity compared to the original peptides. It can bind to ergosterol and can also attack the cell wall/membrane of fungi, although more studies are required to find its accurate mechanism of action.


Assuntos
Antifúngicos , Peptídeos Catiônicos Antimicrobianos , Antifúngicos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular , Ergosterol/metabolismo , Fungos/metabolismo , Hemólise , Testes de Sensibilidade Microbiana
8.
Hum Immunol ; 83(12): 826-831, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36058765

RESUMO

During pregnancy, the immune responses are modulated to protect mothers and infants from different pathogens. Cathelicidin as an antimicrobial peptide has a defending role against many pathogens. In this study, to better understand the role of cathelicidin peptide and three of its related proteins in immune pathways (ERK, MyD88, and TLR-9) in the immune system during pregnancy, we examined their expression in the blood of non-pregnant and pregnant mothers and their infant's cord blood. Blood samples were taken, and their peripheral blood mononuclear cells (PBMCs) were obtained. The expression level of cathelicidin was determined by quantitative PCR. Also, the expression of cathelicidin, ERK, MyD88, and TLR-9 was assessed by Western blotting. Higher level of cathelicidin mRNA was detected in the cord blood samples compared to other samples. The Western blotting results showed higher levels of cathelicidin, ERK, MyD88, and TLR-9 in the cord blood samples than in the blood of both pregnant and non-pregnant samples. Also, the level of all molecules was higher in pregnant than non-pregnant women. These high levels of the mentioned molecules are necessary to protect the mother and fetus against various pathogens, although understanding their mechanism of action needs more studies.


Assuntos
Sangue Fetal , Fator 88 de Diferenciação Mieloide , Feminino , Humanos , Lactente , Gravidez , Leucócitos Mononucleares/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/análise , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor Toll-Like 9/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Catelicidinas
9.
Med J Islam Repub Iran ; 36: 77, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36128285

RESUMO

Background: Virtual Reality (VR) as an emerging and developing technology has received much attention in healthcare and trained different medical groups. Implementing specialized training in cardiac surgery is one of the riskiest and most sensitive issues related to clinical training. Studies have been conducted to train cardiac residents using this technology. This study aimed to identify the effects and features of VR technology in cardiology interventions training. Methods: This scoping review was conducted in 2021 by searching PubMed, Scopus, and Web of Sciences scientific databases by combining the related keywords. A data extraction form was used for data gathering. Data analyses were done through the content analysis method, and results were reported based on the study objectives. Results: 21 studies were included; from the 777 articles found in the initial searches, seven (33.33%) were RCT studies. VR-based education studies in cardiology interventions have grown significantly in recent years. The main effects of applying VR include improved user attitude and satisfaction, improved performance after VR training, and improved training and learning. Input devices include tracking devices, point input devices, and controllers. Output devices were three main categories include graphics audios and haptic. Conclusion: The use of new technologies, especially VR, can improve the efficiency of medical training in clinical settings. It recommends that this technology train the necessary skills for heart surgery in cardiac residents before performing real surgery to reduce the potential risks and medical errors.

10.
Iran J Biotechnol ; 20(4): e2818, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38344319

RESUMO

Background: The Forumad chromite area from Sabzevar ophiolite belt, Northeastern Iran, is an environment with high concentration of heavy metals, particularly chromite and magnesite minerals, containing chromium and magnesium. Objectives: In this study for the first time, we analyzed and report the diversity of microbial (bacterial and archaeal) community inhabiting in Forumad chromite mine environment using metagenomics approach. Materials and Methods: Samples were obtained from different areas of the mine, and total DNA was extracted from water and soil samples. 16S rDNA was amplified using universal primers and the PCR products were cloned in pTz57R/T plasmid. Then, 43% of the positive clones were randomly sequenced. BLAST program in NCBI and EzTaxon databases were used to identify similar 16S rDNA sequences. Phylogenetic analysis was performed using the MEGA5 software and multiple alignments of sequences. Results: In the phylogenetic analyses, proteobacteria, which contains many heavy metals tolerant bacteria especially chromium, were the dominant population in bacterial libraries with Rheinheimera and Cedecaeas the most abundant genuses. Other phyla were Bacteroidetes, Firmicutes, Verrucomicrobia, Chloroflexi, Actinobacteria, Acidobacteria, Cyanobacteria, Gemmatimonadetes, and Planctomycetes. In the archaeal clone library, all the sequences were related to the phylum Thaumarchaeota. Further, 68.6% of the sequences had less than 98.7℅ similarity with the recorded strains which could represent new taxons. Conclusions: The results showed that there was a high microbial diversity in the Forumad chromite area. These results can be used for detoxification and bioremediation of regions contaminated with heavy metals, although more studies are needed.

11.
Expert Rev Anti Infect Ther ; 19(10): 1205-1217, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33844613

RESUMO

Introduction: There are currently no specific drugs and universal vaccines for Coronavirus disease 2019 (COVID-19), hence urgent effective measures are needed to discover and develop therapeutic agents. Applying peptide therapeutics and their related compounds is a promising strategy to achieve this goal. This review is written based on the literature search using several databases, previous studies, scientific reports, our current knowledge about the antimicrobial peptides (AMPs), and our personal analyses on the potential of the antiviral peptides for the treatment of COVID-19.Areas covered: In this review, we begin with a brief description of SARS-CoV2 followed by a comprehensive description of antiviral peptides (AVPs) including natural and synthetic AMPs or AVPs and peptidomimetics. Subsequently, the structural features, mechanisms of action, limitations, and therapeutic applications of these peptides are explained.Expert opinion: Regarding the lack and the limitations of drugs against COVID-19, AMPs, AVPs, and other peptide-like compounds such as peptidomimetics have captured the attention of researchers due to their potential antiviral activities. Some of these compounds comprise unique properties and have demonstrated the potential to fight SARS-CoV2, particularly melittin, lactoferrin, enfuvirtide, and rupintrivir that have the potential to enter animal and clinical trials for the treatment of COVID-19.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Peptídeos Catiônicos Antimicrobianos/química , Antivirais/química , COVID-19/prevenção & controle , Catelicidinas/uso terapêutico , Simulação por Computador , Defensinas/uso terapêutico , Hepcidinas/uso terapêutico , Humanos , Lactoferrina/uso terapêutico , Meliteno/uso terapêutico , Estrutura Molecular , Peptidomiméticos/uso terapêutico , SARS-CoV-2 , Estruturas Virais
12.
J Microbiol Methods ; 151: 99-105, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29953874

RESUMO

Next Generation Sequencing (NGS) technologies are revolutionizing the field of biology and metagenomic-based research. Since the volume of metagenomic data is typically very large, De novo metagenomic assembly can be effectively used to reduce the total amount of data and enhance quality of downstream analysis, such as annotation and binning. Although, there are many freely available assemblers, but selecting one suitable for a specific goal can be highly challenging. In this study, the performance of 11 well-known assemblers was evaluated in the assembly of three different metagenomes. The results obtained show that metaSPAdes is the best assembler and Megahit is a good choice for conservative assembly strategy. In addition, this research provides useful information regarding the pros and cons of each assembler and the effect of read length on assembly, thereby helping scholars to select the optimal assembler based on their objectives.


Assuntos
Biologia Computacional/métodos , Metagenoma , Metagenômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software
13.
J Microbiol Methods ; 143: 32-37, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28939423

RESUMO

Next generation sequencing (NGS) technologies are revolutionizing biology, with Illumina being the most popular NGS platform. Short read assembly is a critical part of most genome studies using NGS. Hence, in this study, the performance of nine well-known assemblers was evaluated in the assembly of seven different microbial genomes. Effect of different read coverage and k-mer parameters on the quality of the assembly were also evaluated on both simulated and actual read datasets. Our results show that the performance of assemblers on real and simulated datasets could be significantly different, mainly because of coverage bias. According to outputs on actual read datasets, for all studied read coverages (of 7×, 25× and 100×), SPAdes and IDBA-UD clearly outperformed other assemblers based on NGA50 and accuracy metrics. Velvet is the most conservative assembler with the lowest NGA50 and error rate.


Assuntos
Biologia Computacional/métodos , Genoma Microbiano , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...