Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(29): 32446-32460, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32589394

RESUMO

In the present study, UV-induced membrane destabilization by TiO2 (anatase) nanoparticles was investigated by neutron reflectometry (NR), small-angle X-ray scattering (SAXS), quartz crystal microbalance with dissipation (QCM-D), dynamic light scattering (DLS), and ζ-potential measurements for phospholipid bilayers formed by zwitterionic palmitoyloleoylphosphatidylcholine (POPC) containing biologically relevant polyunsaturations. TiO2 nanoparticles displayed pH-dependent binding to such bilayers. Nanoparticle binding alone, however, has virtually no destabilizing effects on the lipid bilayers. In contrast, UV illumination in the presence of TiO2 nanoparticles activates membrane destabilization as a result of lipid oxidation caused by the generation of reactive oxygen species (ROS), primarily •OH radicals. Despite the short diffusion length characterizing these, the direct bilayer attachment of TiO2 nanoparticles was demonstrated to not be a sufficient criterion for an efficient UV-induced oxidation of bilayer lipids, the latter also depending on ROS generation in bulk solution. From SAXS and NR, minor structural changes were seen when TiO2 was added in the absence of UV exposure, or on UV exposure in the absence of TiO2 nanoparticles. In contrast, UV exposure in the presence of TiO2 nanoparticles caused large-scale structural transformations, especially at high ionic strength, including gradual bilayer thinning, lateral phase separation, increases in hydration, lipid removal, and potential solubilization into aggregates. Taken together, the results demonstrate that nanoparticle-membrane interactions ROS generation at different solution conditions act in concert to induce lipid membrane destabilization on UV exposure and that both of these need to be considered for understanding the performance of UV-triggered TiO2 nanoparticles in nanomedicine.


Assuntos
Nanopartículas/química , Fosfatidilcolinas/química , Titânio/química , Catálise , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Oxirredução , Tamanho da Partícula , Processos Fotoquímicos , Salinidade , Propriedades de Superfície
2.
J Colloid Interface Sci ; 562: 71-80, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31837621

RESUMO

Effects of size and charge of anionic nanoclays on their interactions with bacteria-mimicking lipid membranes, bacterial lipopolysaccharide (LPS), and Gram-negative bacteria were investigated using ellipsometry, dynamic light scattering, ζ-potential measurements, and confocal microscopy combined with Live/Dead staining. Based on particle size and charge density, three different anionic hectorite nanoclays were employed, and investigated in the presence and absence of the net cationic human antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES). In the absence of this peptide, the nanoclays were found not to bind to similarly anionic bacteria-mimicking model phospholipid membranes, nor to destabilize these. Similarly, while all nanoclays induced aggregation of Escherichia coli bacteria, the flocculated bacteria remained alive after aggregation. In contrast, LL-37 alone, i.e. in the absence of nanoclay particles, displays antimicrobial properties through membrane lysis, but does not cause bacterial aggregation in the concentration range investigated. After loading the nanoclays with LL-37, potent bacterial aggregation combined with bacterial membrane lysis was observed for all nanoclay sizes and charge densities. Demonstrating the potential of these combined systems for confinement of infection, LPS-induced NF-κB activation in human monocytes was found to be strongly suppressed after nanoclay-mediated aggregation, with a wide tolerance for nanoparticle size and charge density.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Argila/química , Escherichia coli/química , Nanoestruturas/química , Floculação , Humanos , Catelicidinas
3.
ACS Appl Mater Interfaces ; 11(17): 15389-15400, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30951282

RESUMO

The antimicrobial effects of Laponite nanoparticles with or without loading of the antimicrobial peptide LL-37 was investigated along with their membrane interactions. The study combines data from ellipsometry, circular dichroism, fluorescence spectroscopy, particle size/ζ potential measurements, and confocal microscopy. As a result of the net negative charge of Laponite, loading of net positively charged LL-37 increases with increasing pH. The peptide was found to bind primarily to the outer surface of the Laponite nanoparticles in a predominantly helical conformation, leading to charge reversal. Despite their net positive charge, peptide-loaded Laponite nanoparticles did not kill Gram-negative Escherichia coli bacteria or disrupt anionic model liposomes. They did however cause bacteria flocculation, originating from the interaction of Laponite and bacterial lipopolysaccharide (LPS). Free LL-37, in contrast, is potently antimicrobial through membrane disruption but does not induce bacterial aggregation in the concentration range investigated. Through LL-37 loading of Laponite nanoparticles, the combined effects of bacterial flocculation and membrane lysis are observed. However, bacteria aggregation seems to be limited to Gram-negative bacteria as Laponite did not cause flocculation of Gram-positive Bacillus subtilis bacteria nor did it bind to lipoteichoic acid from bacterial envelopes. Taken together, the present investigation reports several novel phenomena by demonstrating that nanoparticle charge does not invariably control membrane destabilization and by identifying the ability of anionic Laponite nanoparticles to effectively flocculate Gram-negative bacteria through LPS binding. As demonstrated in cell experiments, such aggregation results in diminished LPS-induced cell activation, thus outlining a promising approach for confinement of infection and inflammation caused by such pathogens.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Nanopartículas/química , Silicatos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Dicroísmo Circular , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Nanopartículas/metabolismo , Tamanho da Partícula , Silicatos/metabolismo , Catelicidinas
4.
Biomacromolecules ; 19(12): 4691-4702, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30427659

RESUMO

Herein, we report on the formation of cross-linked antimicrobial peptide-loaded microgel multilayers. Poly(ethyl acrylate- co-methacrylic acid) microgels were synthesized and functionalized with biotin to enable the formation of microgel multilayers cross-linked with avidin. Microgel functionalization and avidin cross-linking were verified with infrared spectroscopy, dynamic light scattering, and z-potential measurements, while multilayer formation (up to four layers) was studied with null ellipsometry and quartz crystal microbalance with dissipation (QCM-D). Incorporation of the antimicrobial peptide KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR) into the microgel multilayers was achieved either in one shot after multilayer formation or through addition after each microgel layer deposition. The latter was found to strongly promote peptide incorporation. Further, antimicrobial properties of the peptide-loaded microgel multilayers against Escherichia coli were investigated and compared to those of a peptide-loaded microgel monolayer. Results showed a more pronounced suppression in bacterial viability in suspension for the microgel multilayers. Correspondingly, LIVE/DEAD staining showed promoted disruption of adhered bacteria for the KYE28-loaded multilayers. Taken together, cross-linked microgel multilayers thus show promise as high load surface coatings for antimicrobial peptides.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Portadores de Fármacos/farmacologia , Escherichia coli/efeitos dos fármacos , Resinas Acrílicas/química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/química , Avidina/química , Biotina/química , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos/química , Escherichia coli/patogenicidade , Géis/química , Géis/farmacologia , Humanos , Propriedades de Superfície
5.
Adv Colloid Interface Sci ; 248: 105-128, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28807368

RESUMO

Interactions between nanoparticles and biological membranes are attracting increasing attention in current nanomedicine, and play a key role both for nanotoxicology and for utilizing nanomaterials in diagnostics, drug delivery, functional biomaterials, as well as combinations of these, e.g., in theranostics. In addition, there is considerable current interest in the use of nanomaterials as antimicrobial agents, motivated by increasing resistance development against conventional antibiotics. Here, various nanomaterials offer opportunities for triggered functionalites to combat challenging infections. Although the performance in these diverse applications is governed by a complex interplay between the nanomaterial, the properties of included drugs (if any), and the biological system, nanoparticle-membrane interactions constitute a key initial step and play a key role for the subsequent biological response. In the present overview, the current understanding of inorganic nanomaterials as antimicrobial agents is outlined, with special focus on the interplay between antimicrobial effects and membrane interactions, and how membrane interactions and antimicrobial effects of such materials depend on nanoparticle properties, membrane composition, and external (e.g., light and magnetic) fields.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Membrana Celular/metabolismo , Compostos Inorgânicos/química , Compostos Inorgânicos/farmacologia , Nanopartículas , Animais , Anti-Infecciosos/metabolismo , Membrana Celular/efeitos dos fármacos , Humanos , Compostos Inorgânicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...