Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 31(43): 435504, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-32615549

RESUMO

In this paper, nicotine (NIC) was detected by cyclic voltammetry (CV) using a modified glassy carbon (GC) electrode. To do this, the surface of the GC electrode was modified by hybrid nanofiber obtained from the electrospinning method. Hybrid nanofibers were produced through the dispersion of carboxylated multi-walled carbon nanotube (MWCNT-COOH) as an inorganic component in the chitosan (CS) polymer matrix as an organic component. The nanofibers showed unique morphology and high surface area value. With the increase of functionalized carbon nanotube content in the nanofibers, the mean pore diameter and average nanofiber diameter increased. The electrochemical properties of nanofibers towards the sensing of NIC were investigated by the CV method. NIC was irreversibly reduced with the use of a CS/MWCNT-COOH electrode, a controlled process with two protons and two electrons. An oxidation signal at lower potential with higher current was obtained for NIC with the use of a polymer-modified electrode compared to a GC electrode. This was as a result of the electrocatalytic effect of the hybrid nanofibers due to the ability of carbon nanotubes to increase the rate of electron transfer. Under optimum conditions, the oxidation of NIC occurred at 0.82 eV with a pH of 7.4. The linear calibration curve was in the concentration range of 0.1-100 µM NIC (R 2 = 0.9987) with a detection limit of 30 nM. For 100 parallel 10 µM NIC diagnoses for five replicates, 97.2% with a standard deviation of 4.08 maintained their stability over the first cycle. This indicates that the CS/MWCNT-COOH electrode has excellent reproducibility and stability.


Assuntos
Quitosana/química , Nanofibras/química , Nanotubos de Carbono/química , Nicotina/análise , Técnicas Eletroquímicas/métodos , Eletrodos , Concentração de Íons de Hidrogênio , Limite de Detecção , Nanofibras/ultraestrutura , Nanotubos de Carbono/ultraestrutura
2.
Res Pharm Sci ; 13(3): 273-282, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29853936

RESUMO

In this paper, polyurethane (PU), chitosan (Cs)/polyethylene oxide (PEO), and core-shell PU/Cs nanofibers were produced at the optimal processing conditions using electrospinning technique. Several methods including SEM, TEM, FTIR, XRD, DSC, TGA and image analysis were utilized to characterize these nanofibrous structures. SEM images exhibited that the core-shell PU/Cs nanofibers were spun without any structural imperfections at the optimized processing conditions. TEM image confirmed the PU/Cs core-shell nanofibers were formed apparently. It that seems the inclusion of Cs/PEO to the shell, did not induce the significant variations in the crystallinity in the core-shell nanofibers. DSC analysis showed that the inclusion of Cs/PEO led to the glass temperature of the composition increased significantly compared to those of neat PU nanofibers. The thermal degradation of core-shell PU/Cs was similar to PU nanofibers degradation due to the higher PU concentration compared to other components. It was hypothesized that the core-shell PU/Cs nanofibers can be used as a potential platform for the bioactive scaffolds in tissue engineering. Further biological tests should be conducted to evaluate this platform as a three dimensional scaffold with the capabilities of releasing the bioactive molecules in a sustained manner.

3.
Biomed Res Int ; 2014: 438065, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24995296

RESUMO

3D nanofibrous chitosan-polyethylene oxide (PEO) scaffolds were fabricated by electrospinning at different processing parameters. The structural characteristics, such as pore size, overall porosity, pore interconnectivity, and scaffold percolative efficiency (SPE), were simulated by a robust image analysis. Mouse fibroblast cells (L929) were cultured in RPMI for 2 days in the presence of various samples of nanofibrous chitosan/PEO scaffolds. Cell attachments and corresponding mean viability were enhanced from 50% to 110% compared to that belonging to a control even at packed morphologies of scaffolds constituted from pores with nanoscale diameter. To elucidate the correlation between structural characteristics within the depth of the scaffolds' profile and cell viability, a comparative analysis was proposed. This analysis revealed that larger fiber diameters and pore sizes can enhance cell viability. On the contrary, increasing the other structural elements such as overall porosity and interconnectivity due to a simultaneous reduction in fiber diameter and pore size through the electrospinning process can reduce the viability of cells. In addition, it was found that manipulation of the processing parameters in electrospinning can compensate for the effects of packed morphologies of nanofibrous scaffolds and can thus potentially improve the infiltration and viability of cells.


Assuntos
Quitosana/administração & dosagem , Nanofibras/química , Engenharia Tecidual , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos , Nanofibras/administração & dosagem , Polietilenoglicóis/química , Porosidade , Alicerces Teciduais/efeitos adversos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...