Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
npj Quantum Inf ; 9(1): 56, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665257

RESUMO

Solid state spins have demonstrated significant potential in quantum sensing with applications including fundamental science, medical diagnostics and navigation. The quantum sensing schemes showing best performance under ambient conditions all utilize microwave or radio-frequency driving, which poses a significant limitation for miniaturization, energy efficiency, and non-invasiveness of quantum sensors. We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing. Our scheme involves the 15N nuclear spin of the Nitrogen-Vacancy (NV) center in diamond as a sensing resource, and exploits NV spin dynamics in oblique magnetic fields near the NV's excited state level anti-crossing to optically pump the nuclear spin into a quantum superposition state. We demonstrate all-optical free-induction decay measurements-the key protocol for low-frequency quantum sensing-both on single spins and spin ensembles. Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications in challenging environments.

2.
Phys Rev Lett ; 122(9): 090502, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30932510

RESUMO

We demonstrate the use of shortcuts to adiabaticity protocols for initialization, read-out, and coherent control of dressed states generated by closed-contour, coherent driving of a single spin. Such dressed states have recently been shown to exhibit efficient coherence protection, beyond what their two-level counterparts can offer. Our state transfer protocols yield a transfer fidelity of ∼99.4(2)% while accelerating the transfer speed by a factor of 2.6 compared to the adiabatic approach. We show bidirectionality of the accelerated state transfer, which we employ for direct dressed state population read-out after coherent manipulation in the dressed state manifold. Our results enable direct and efficient access to coherence-protected dressed states of individual spins and thereby offer attractive avenues for applications in quantum information processing or quantum sensing.

3.
Science ; 364(6444): 973-976, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31023891

RESUMO

The discovery of ferromagnetism in two-dimensional (2D) van der Waals (vdW) crystals has generated widespread interest. Making further progress in this area requires quantitative knowledge of the magnetic properties of vdW magnets at the nanoscale. We used scanning single-spin magnetometry based on diamond nitrogen-vacancy centers to image the magnetization, localized defects, and magnetic domains of atomically thin crystals of the vdW magnet chromium(III) iodide (CrI3). We determined the magnetization of CrI3 monolayers to be ≈16 Bohr magnetons per square nanometer, with comparable values in samples with odd numbers of layers; however, the magnetization vanishes when the number of layers is even. We also found that structural modifications can induce switching between ferromagnetic and antiferromagnetic interlayer ordering. These results demonstrate the benefit of using single-spin scanning magnetometry to study the magnetism of 2D vdW magnets.

4.
Nature ; 549(7671): 252-256, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28905889

RESUMO

Although ferromagnets have many applications, their large magnetization and the resulting energy cost for switching magnetic moments bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem, and often have extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or may produce emergent spin-orbit effects that enable efficient spin-charge interconversion. To harness these traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive, scanning single-spin magnetometer based on a nitrogen-vacancy defect in diamond, we demonstrate real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film at room temperature. We image the spin cycloid of a multiferroic bismuth ferrite (BiFeO3) thin film and extract a period of about 70 nanometres, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO3 to manipulate the cycloid propagation direction by an electric field. Besides highlighting the potential of nitrogen-vacancy magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO3 can be used in the design of reconfigurable nanoscale spin textures.

5.
Nat Nanotechnol ; 11(8): 677-81, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27136133

RESUMO

Microscopic studies of superconductors and their vortices play a pivotal role in understanding the mechanisms underlying superconductivity. Local measurements of penetration depths or magnetic stray fields enable access to fundamental aspects such as nanoscale variations in superfluid densities or the order parameter symmetry of superconductors. However, experimental tools that offer quantitative, nanoscale magnetometry and operate over large ranges of temperature and magnetic fields are still lacking. Here, we demonstrate the first operation of a cryogenic scanning quantum sensor in the form of a single nitrogen-vacancy electronic spin in diamond, which is capable of overcoming these existing limitations. To demonstrate the power of our approach, we perform quantitative, nanoscale magnetic imaging of Pearl vortices in the cuprate superconductor YBa2Cu3O7-δ. With a sensor-to-sample distance of ∼10 nm, we observe striking deviations from the prevalent monopole approximation in our vortex stray-field images, and find excellent quantitative agreement with Pearl's analytic model. Our experiments provide a non-invasive and unambiguous determination of the system's local penetration depth and are readily extended to higher temperatures and magnetic fields. These results demonstrate the potential of quantitative quantum sensors in benchmarking microscopic models of complex electronic systems and open the door for further exploration of strongly correlated electron physics using scanning nitrogen-vacancy magnetometry.

6.
Phys Rev Lett ; 113(2): 020503, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062153

RESUMO

We report on single electronic spins coupled to the motion of mechanical resonators by a novel mechanism based on crystal strain. Our device consists of single-crystal diamond cantilevers with embedded nitrogen-vacancy center spins. Using optically detected electron spin resonance, we determine the unknown spin-strain coupling constants and demonstrate that our system resides well within the resolved sideband regime. We realize coupling strengths exceeding 10 MHz under mechanical driving and show that our system has the potential to reach strong coupling. Our novel hybrid system forms a resource for future experiments on spin-based cantilever cooling and coherent spin-oscillator coupling.

7.
Rep Prog Phys ; 77(5): 056503, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24801494

RESUMO

The isolated electronic spin system of the nitrogen-vacancy (NV) centre in diamond offers unique possibilities to be employed as a nanoscale sensor for detection and imaging of weak magnetic fields. Magnetic imaging with nanometric resolution and field detection capabilities in the nanotesla range are enabled by the atomic-size and exceptionally long spin-coherence times of this naturally occurring defect. The exciting perspectives that ensue from these characteristics have triggered vivid experimental activities in the emerging field of 'NV magnetometry'. It is the purpose of this article to review the recent progress in high-sensitivity nanoscale NV magnetometry, generate an overview of the most pertinent results of the last years and highlight perspectives for future developments. We will present the physical principles that allow for magnetic field detection with NV centres and discuss first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences.

8.
Nano Lett ; 14(4): 1982-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24588353

RESUMO

We report the observation of stable optical transitions in nitrogen-vacancy (NV) centers created by ion implantation. Using a combination of high temperature annealing and subsequent surface treatment, we reproducibly create NV centers with zero-phonon lines (ZPL) exhibiting spectral diffusion that is close to the lifetime-limited optical line width. The residual spectral diffusion is further reduced by using resonant optical pumping to maintain the NV(-) charge state. This approach allows for placement of NV centers with excellent optical coherence in a well-defined device layer, which is a crucial step in the development of diamond-based devices for quantum optics, nanophotonics, and quantum information science.

9.
Nat Nanotechnol ; 9(4): 279-84, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24658168

RESUMO

Magnetic resonance imaging (MRI) has revolutionized biomedical science by providing non-invasive, three-dimensional biological imaging. However, spatial resolution in conventional MRI systems is limited to tens of micrometres, which is insufficient for imaging on molecular scales. Here, we demonstrate an MRI technique that provides subnanometre spatial resolution in three dimensions, with single electron-spin sensitivity. Our imaging method works under ambient conditions and can measure ubiquitous 'dark' spins, which constitute nearly all spin targets of interest. In this technique, the magnetic quantum-projection noise of dark spins is measured using a single nitrogen-vacancy (NV) magnetometer located near the surface of a diamond chip. The distribution of spins surrounding the NV magnetometer is imaged with a scanning magnetic-field gradient. To evaluate the performance of the NV-MRI technique, we image the three-dimensional landscape of electronic spins at the diamond surface and achieve an unprecedented combination of resolution (0.8 nm laterally and 1.5 nm vertically) and single-spin sensitivity. Our measurements uncover electronic spins on the diamond surface that can potentially be used as resources for improved magnetic imaging. This NV-MRI technique is immediately applicable to diverse systems including imaging spin chains, readout of spin-based quantum bits, and determining the location of spin labels in biological systems.


Assuntos
Imageamento por Ressonância Magnética/métodos , Modelos Teóricos , Marcadores de Spin , Diamante/química , Imageamento por Ressonância Magnética/instrumentação , Sensibilidade e Especificidade
10.
Nat Nanotechnol ; 7(5): 320-4, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22504708

RESUMO

The nitrogen-vacancy defect centre in diamond has potential applications in nanoscale electric and magnetic-field sensing, single-photon microscopy, quantum information processing and bioimaging. These applications rely on the ability to position a single nitrogen-vacancy centre within a few nanometres of a sample, and then scan it across the sample surface, while preserving the centre's spin coherence and readout fidelity. However, existing scanning techniques, which use a single diamond nanocrystal grafted onto the tip of a scanning probe microscope, suffer from short spin coherence times due to poor crystal quality, and from inefficient far-field collection of the fluorescence from the nitrogen-vacancy centre. Here, we demonstrate a robust method for scanning a single nitrogen-vacancy centre within tens of nanometres from a sample surface that addresses both of these concerns. This is achieved by positioning a single nitrogen-vacancy centre at the end of a high-purity diamond nanopillar, which we use as the tip of an atomic force microscope. Our approach ensures long nitrogen-vacancy spin coherence times (∼75 µs), enhanced nitrogen-vacancy collection efficiencies due to waveguiding, and mechanical robustness of the device (several weeks of scanning time). We are able to image magnetic domains with widths of 25 nm, and demonstrate a magnetic field sensitivity of 56 nT Hz(-1/2) at a frequency of 33 kHz, which is unprecedented for scanning nitrogen-vacancy centres.


Assuntos
Diamante/química , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Nitrogênio/química , Desenho de Equipamento
11.
Phys Rev Lett ; 104(5): 056603, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20366781

RESUMO

We report on experimental observations of an anomalous Hanle effect in individual self-assembled InAs/GaAs quantum dots. A sizable electron spin polarization photocreated under constant illumination is maintained in transverse magnetic fields as high as approximately 1 T, up to a critical field where it abruptly collapses. These striking anomalies of the Hanle curve point to a novel mechanism of dynamic nuclear spin polarization giving rise to an effective magnetic field generated perpendicular to the optically injected electron spin polarization. This transverse Overhauser field, confirmed by the cancellation of electron Zeeman splitting below the critical field, is likely to be a consequence of the strong inhomogeneous quadrupolar interactions typical for strained quantum dots.

12.
Phys Rev Lett ; 99(5): 056804, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17930778

RESUMO

We present measurements of the buildup and decay of nuclear spin polarization in a single semiconductor quantum dot. Our experiment shows that we polarize the nuclei in a few milliseconds, while their decay dynamics depends drastically on external parameters. We show that a single electron can very efficiently depolarize nuclear spins in milliseconds whereas in the absence of the electron the nuclear spin lifetime is on the scale of seconds. This lifetime is further enhanced by 1-2 orders of magnitude by quenching the nonsecular nuclear dipole-dipole interactions with a magnetic field of 1 mT.

13.
Phys Rev Lett ; 96(16): 167403, 2006 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-16712275

RESUMO

We demonstrate dynamical nuclear-spin polarization in the absence of an external magnetic field by resonant circularly polarized optical excitation of a single electron or hole charged quantum dot. Optical pumping of the electron spin induces an effective inhomogeneous magnetic (Knight) field that determines the direction along which nuclear spins could polarize and enables nuclear-spin cooling by suppressing depolarization induced by nuclear dipole-dipole interactions. Our experiments constitute a first step towards a quantum measurement of the Overhauser field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...