Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 16034, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690786

RESUMO

The one-sided addition of fengycin (FE) to planar lipid bilayers mimicking target fungal cell membranes up to 0.1 to 0.5 µM in the membrane bathing solution leads to the formation of well-defined and well-reproducible single-ion channels of various conductances in the picosiemens range. FE channels were characterized by asymmetric conductance-voltage characteristic. Membranes treated with FE showed nonideal cationic selectivity in potassium chloride bathing solutions. The membrane conductance induced by FE increased with the second power of the lipopeptide aqueous concentration, suggesting that at least FE dimers are involved in the formation of conductive subunits. The pore formation ability of FE was not distinctly affected by the molecular shape of membrane lipids but strongly depended on the presence of negatively charged species in the bilayer. FE channels were characterized by weakly pronounced voltage gating. Small molecules known to modify the transmembrane distribution of electrical potential and the lateral pressure profile were used to modulate the channel-forming activity of FE. The observed effects of membrane modifiers were attributed to changes in lipid packing and lipopeptide oligomerization in the membrane.


Assuntos
Membrana Celular/química , Fungos/química , Canais Iônicos/química , Bicamadas Lipídicas/química , Lipopeptídeos/química
2.
Sci Rep ; 8(1): 11543, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30069037

RESUMO

The effects of the amide-linked (lidocaine (LDC), mepivacaine (MPV), prilocaine (PLC)) and ester-bound local anesthetics (benzocaine (BZC), procaine (PRC), and tetracaine (TTC)) on the pore-forming activity of the antifungal lipopeptide syringomycin E (SRE) in lipid bilayers were studied. Independently on electrolyte concentration in the membrane bathing solution the observed changes in conductance of SRE channels agreed with the altered membrane dipole potential under the action of ester-bound local anesthetics. Effects of aminoamides in diluted and concentrated solutions were completely different. At 0.1 M KCl (pH 7.4) the effects of amide-linked anesthetics were in accordance with changes in the membrane surface potential, while at 2 M KCl aminoamides blocked ion passage through the SRE channels, leading to sharp reductions in pore conductance at negative voltages and 100-fold decreases in the channel lifetimes. The effects were not practically influenced by the membrane lipid composition. The interaction cooperativity implied the existence of specific binding sites for amide-bound anesthetics in SRE channels.


Assuntos
Anestésicos Locais/farmacologia , Canais Iônicos/agonistas , Canais Iônicos/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas , Potenciais da Membrana , Cloreto de Potássio/metabolismo
3.
Biochim Biophys Acta Biomembr ; 1860(3): 691-699, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29253504

RESUMO

The effects of dipole modifiers, thyroid hormones (thyroxine and triiodothyronine) and xanthene dyes (Rose Bengal, phloxineB, erythrosin, eosinY and fluorescein) on the pore-forming activity of the lipopeptide syringomycin E (SRE) produced by Pseudomonas syringae were studied in a model bilayer. Thyroxine does not noticeably influence the steady-state number of open SRE channels (Nop), whereas triiodothyronine decreases it 10-fold at -50mV. Rose Bengal, phloxine B and erythrosin significantly increase Nop by 350, 100 and 70 times, respectively. Eosin Y and fluorescein do not practically affect the pore-forming activity of SRE. Recently, we showed that hormones decrease the dipole potential of lipid bilayers by approximately 60mV at 50µM, while Rose Bengal, phloxine B and erythrosin at 2.5µM reduce the membrane dipole potential by 120, 80 and 50mV, respectively. In the present study using differential scanning microcalorimetry, confocal fluorescence microscopy, the calcein release technique and measurements of membrane curvature elasticity, we show that triiodothyronine strongly affects the fluidity of model membranes: its addition leads to a significant decrease in the temperature and cooperativity of the main phase transition of DPPC, calcein leakage from DOPC vesicles, fluidization of solid domains in DOPC/DPPC liposomes, and promotion of lipid curvature stress. Thyroxine exerts a weaker effect. Xanthene dyes do not influence the phase transition of DPPC. Despite the decrease in the dipole potential, thyroid hormones modulate SRE channels predominantly via the elastic properties of the membrane, whereas the xanthene dyes Rose Bengal, phloxine B and erythrosine affect SRE channels via bilayer electrostatics.


Assuntos
Depsipeptídeos/efeitos dos fármacos , Corantes Fluorescentes/farmacologia , Lipopeptídeos/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Peptídeos Cíclicos/efeitos dos fármacos , Tiroxina/farmacologia , Tri-Iodotironina/farmacologia , Xantenos/farmacologia , Varredura Diferencial de Calorimetria , Depsipeptídeos/farmacologia , Elasticidade , Condutividade Elétrica , Fluoresceínas/metabolismo , Bicamadas Lipídicas , Lipopeptídeos/farmacologia , Lipossomos , Lipídeos de Membrana/química , Microscopia Confocal , Microscopia de Fluorescência , Nanotubos , Peptídeos Cíclicos/farmacologia , Fosfolipídeos/química
4.
J Membr Biol ; 249(1-2): 97-106, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26454655

RESUMO

In this work, we examine the ability of dipole modifiers, flavonoids, and RH dyes to affect the dipole potential (φ d) and phase separation in membranes composed of ternary mixtures of POPC with different sphingolipids and sterols. Changes in the steady-state conductance induced by cation-ionophore complexes have been measured to evaluate the changes in dipole potential of planar lipid bilayers. Confocal fluorescence microscopy has been employed to investigate lipid segregation in giant unilamellar vesicles. The effects of flavonoids on φ d depend on lipid composition and dipole modifier type. The effectiveness of RH dyes to increase φ d depends on sphingolipid type but is not influenced by sterol content. Tested modifiers lead to partial or complete disruption of gel domains in bilayers composed of POPC, sphingomyelin, and cholesterol. Substitution of cholesterol to ergosterol or 7-dehydrocholesterol leads to a loss of fluidizing effects of modifiers except phloretin. This may be due to various compositions of gel domains. The lack of influence of modifiers on phase scenario in vesicles composed of ternary mixtures of POPC, cholesterol, and phytosphingosine or sphinganine is related to an absence of gel-like phase. It was concluded that the membrane lateral heterogeneity affects the dipole-modifying abilities of the agents that influence the magnitude of φ d by intercalation into the bilayer and orientation of its own large dipole moments (phloretin and RH dyes). The efficacy of modifiers that do not penetrate deeply and affect φ d through water adsorption (phlorizin, quercetin, and myricetin) is not influenced by lateral heterogeneity of membrane.


Assuntos
Bicamadas Lipídicas/química , Potenciais da Membrana/efeitos dos fármacos , Colesterol/química , Flavonoides/farmacologia , Lipídeos de Membrana/química , Microscopia Confocal , Estrutura Molecular , Lipossomas Unilamelares
5.
Int Rev Cell Mol Biol ; 315: 245-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25708465

RESUMO

Electrostatic fields generated on and within biological membranes play a fundamental role in key processes in cell functions. The role of the membrane dipole potential is of particular interest because of its powerful impact on membrane permeability and lipid-protein interactions, including protein insertion, oligomerization, and function. The membrane dipole potential is defined by the orientation of electric dipoles of lipid headgroups, fatty acid carbonyl groups, and membrane-adsorbed water. As a result, the membrane interior is several hundred millivolts more positive than the external aqueous phase. This potential decrease depends on the lipid, and especially sterol, composition of the membrane. The adsorption of certain electroneutral molecules known as dipole modifiers may also lead to significant changes in the magnitude of the potential decrease. These agents are widely used to study the effects of the dipole potential on membrane transport. This review presents a critical analysis of a variety of data from studies dedicated to ion channel formation and functioning in membranes with different dipole potentials. The types of ion channels found in cellular membranes and pores formed by antimicrobial agents and toxins in artificial lipid membranes are summarized. The mechanisms underlying the influence of the membrane dipole potential on ion channel activity, including dipole-dipole and charge-dipole interactions in the pores and in membranes, are discussed. A hypothesis, in which lipid rafts in both model and cellular membranes also modulate ion channel activity by virtue of an increased or decreased dipole potential, is also considered.


Assuntos
Canais Iônicos/metabolismo , Potenciais da Membrana/fisiologia , Animais , Antibacterianos/farmacologia , Humanos , Bicamadas Lipídicas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos
6.
Langmuir ; 26(19): 15092-7, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20828112

RESUMO

The effect of dipole modifying agents phloretin and RH 421 on the membrane conductance induced by surfactin, a lipopeptide antibiotic from Bacillus subtilis, was studied. Surfactin added on both sides of a bilayer formed from diphytanoylphosphocholine in 1 M KCl (pH 6.5) leads to the formation of voltage-independent channels of different conductance levels. The conductance of different states of SA channels varies from tens of picosiemens for small pores up to tens of nanosiemens for large ones. Small channels demonstrate pronounced cationic selectivity, whereas large ones practically lose their K(+)/Cl(-) selectivity, most probably because of their large effective radii. The addition of phloretin to the bilayer bathing solution, the agent known to decrease the membrane dipole potential, results in a decrease in the surfactin-induced membrane conductance. At the same time, increasing the membrane dipole potential because of the introduction of RH 421 leads to a rise in the steady-state conductance. Increasing dipole potential is accompanied by increases in both the number of open channels and their conductance. The observed changes in the channel-forming activity of surfactin might be caused by varying the partition coefficient of lipopeptide between the lipid and aqueous phases.


Assuntos
Lipopeptídeos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Cloretos/metabolismo , Transporte de Íons , Bicamadas Lipídicas , Potássio/metabolismo
7.
Langmuir ; 24(7): 2987-91, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18324870

RESUMO

The membrane dipole potential is responsible for the modulation of numerous biological processes. It was previously shown (Ostroumova, O. S.; Kaulin, Y. A.; Gurnev, P. A.; Schagina, L. V. Langmuir 2007, 23, 6889-6892) that variations in the dipole potential lead to changes in the channel properties of the antifungal lipodepsipeptide syringomycin E (SRE). Here, data are presented demonstrating the effect of the membrane dipole potential on the channel-forming activity of SRE. A rise in the dipole potential is accompanied by both an increase in the minimum SRE concentration required for the detection of single channels at fixed voltage and a decrease in the steady-state number of open SRE channels at a given SRE concentration and voltage. These alterations are determined by several factors: gating charge, connected with translocations of lipid and SRE dipoles during channel formation, the bilayer-water solution partitioning of SRE, and the chemical work related to conformational changes during channel formation.


Assuntos
Potenciais da Membrana/fisiologia , Peptídeos Cíclicos/farmacologia , Antifúngicos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Eletrofisiologia , Bicamadas Lipídicas
8.
Eur Biophys J ; 35(5): 382-92, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16470378

RESUMO

The bacterial lipodepsipeptide syringomycin E (SRE) added to one (cis-) side of bilayer lipid membrane forms voltage dependent ion channels. It was found that G-actin increased the SRE-induced membrane conductance due to formation of additional SRE-channels only in the case when actin and SRE were applied to opposite sides of a lipid bilayer. The time course of conductance relaxation depended on the sequence of SRE and actin addition, suggesting that actin binds to the lipid bilayer and binding is a limiting step for SRE-channel formation. G-actin adsorption on the membrane was irreversible. The amphiphilic polymers, Konig's polyanion (KP) and poly(Lys, Trp) (PLT) produced the actin-like effect. It was shown that the increase in the SRE membrane activity was due to hydrophobic interactions between the adsorbing molecules and membrane. Nevertheless, hydrophobic interactions were not sufficient for the increase of SRE channel-forming activity. The dependence of the number of SRE-channels on the concentration of adsorbing species gave an S-shaped curve indicating cooperative adsorption of the species. Kinetic analysis of SRE-channel number growth led to the conclusion that the actin, KP, and PLT molecules form aggregates (domains) on the trans-monolayer. It is suggested that an excess of SRE-channel formation occurs within the regions of the cis-monolayer adjacent to the domains of the adsorbed molecules, which increase the effective concentration of SRE-channel precursors.


Assuntos
Actinas/química , Canais Iônicos/química , Bicamadas Lipídicas/química , Fluidez de Membrana , Modelos Químicos , Modelos Moleculares , Polímeros/química , Simulação por Computador , Interações Hidrofóbicas e Hidrofílicas , Potenciais da Membrana , Peptídeos Cíclicos
9.
Bioelectrochemistry ; 60(1-2): 21-7, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12893306

RESUMO

To elucidate the voltage gating of syringomycin E (SRE) ion channels in lipid bilayers, the effective gating charge q was measured under different conditions. It was shown that q and its sign are dependent on membrane surface charge, dipole potential, and the outer potential (Delta phi). The q values were positive for charged bilayers and negative for uncharged bilayers bathed in the same 0.1 M NaCl solutions. Effects of dipole modifying agents on the gating properties of SRE channels were measured. In uncharged bilayers, addition of phloretin resulted in an increase of q values. For charged bilayers, the presence of RH-421 or 6-ketocholestanol leads to the reverse in the sign of q from positive to negative. The q values were potential-dependent at higher negative voltages with charged membranes bathed in solutions with high salt concentrations. It is concluded that lipid molecules participating in the SRE channel structure contribute to channel formation work due to Coulomb and dipolar interactions with the electric field applied to a membrane. The potential dependence of q is explained by interactions of charged and uncharged lipids with SRE molecules in the channels.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Canais Iônicos/metabolismo , Bicamadas Lipídicas/metabolismo , Peptídeos Cíclicos/farmacologia , Floretina/farmacologia , Fosfatidilserinas/metabolismo
10.
Biophys J ; 82(4): 1985-94, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11916856

RESUMO

Highly reproducible ion channels of the lipopeptide antibiotic syringomycin E demonstrate unprecedented involvement of the host bilayer lipids. We find that in addition to a pronounced influence of lipid species on the open-channel ionic conductance, the membrane lipids play a crucial role in channel gating. The effective gating charge, which characterizes sensitivity of the conformational equilibrium of the syringomycin E channels to the transmembrane voltage, is modified by the lipid charge and lipid dipolar moment. We show that the type of host lipid determines not only the absolute value but also the sign of the gating charge. With negatively charged bilayers, the gating charge sign inverts with increased salt concentration or decreased pH. We also demonstrate that the replacement of lamellar lipid by nonlamellar with the negative spontaneous curvature inhibits channel formation. These observations suggest that the asymmetric channel directly incorporates lipids. The charges and dipoles resulting from the structural inclusion of lipids are important determinants of the overall energetics that underlies channel gating. We conclude that the syringomycin E channel may serve as a biophysical model to link studies of ion channels with those of lipidic pores in membrane fusion.


Assuntos
Lipídeos/química , Peptídeos Cíclicos/química , Peptídeos/química , Antibacterianos/farmacologia , Cálcio/metabolismo , Membrana Celular/metabolismo , Relação Dose-Resposta a Droga , Eletrólitos/química , Cinética , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...