Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 12(7): 1143-1150, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267885

RESUMO

IDO1 inhibitors have shown promise as immunotherapies for the treatment of a variety of cancers, including metastatic melanoma and renal cell carcinoma. We recently reported the identification of several novel heme-displacing IDO1 inhibitors, including the clinical molecules linrodostat (BMS-986205) and BMS-986242. Both molecules contain quinolines that, while being present in successful medicines, are known to be potentially susceptible to oxidative metabolism. Efforts to swap this quinoline with an alternative aromatic system led to the discovery of 2,3-disubstituted pyridines as suitable replacements. Further optimization, which included lowering ClogP in combination with strategic fluorine incorporation, led to the discovery of compound 29, a potent, selective IDO1 inhibitor with robust pharmacodynamic activity in a mouse xenograft model.

2.
ACS Med Chem Lett ; 12(3): 494-501, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33738077

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) has been identified as a target for small-molecule immunotherapy for the treatment of a variety of cancers including renal cell carcinoma and metastatic melanoma. This work focuses on the identification of IDO1 inhibitors containing replacements or isosteres for the amide found in BMS-986205, an amide-containing, IDO1-selective inhibitor currently in phase III clinical trials. Detailed subsequently are efforts to identify a structurally differentiated IDO1 inhibitor via the pursuit of a variety of heterocyclic isosteres, leading to the discovery of highly potent, imidazopyridine-containing IDO1 inhibitors.

3.
ACS Med Chem Lett ; 12(2): 288-294, 2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33603977

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme-containing dioxygenase enzyme implicated in cancer immune response. This account details the discovery of BMS-986242, a novel IDO1 inhibitor designed for the treatment of a variety of cancers including metastatic melanoma and renal cell carcinoma. Given the substantial interest around this target for cancer immunotherapy, we sought to identify a structurally differentiated clinical candidate that performs comparably to linrodostat (BMS-986205) in terms of both in vitro potency and in vivo pharmacodynamic effect in a mouse xenograft model. On the basis of its preclinical profile, BMS-986242 was selected as a candidate for clinical development.

4.
Mol Cancer Ther ; 20(3): 467-476, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33298590

RESUMO

Tumors can exploit the indoleamine 2,3-dioxygenase 1 (IDO1) pathway to create an immunosuppressive microenvironment. Activated IDO1 metabolizes tryptophan into immunosuppressive kynurenine, leading to suppressed effector T-cell (Teff) proliferation, allowing for tumor escape from host immune surveillance. IDO1 inhibition counteracts this immunosuppressive tumor microenvironment and may improve cancer outcomes, particularly when combined with other immunotherapies. Linrodostat mesylate (linrodostat) is a potent, selective oral IDO1 inhibitor that occupies the heme cofactor-binding site to prevent further IDO1 activation and is currently in multiple clinical trials for treatment of patients with advanced cancers. Here, we assess the in vitro potency, in vivo pharmacodynamic (PD) activity, and preclinical pharmacokinetics (PKs) of linrodostat. Linrodostat exhibited potent cellular activity, suppressing kynurenine production in HEK293 cells overexpressing human IDO1 and HeLa cells stimulated with IFNγ, with no activity against tryptophan 2,3-dioxygenase or murine indoleamine 2,3-dioxygenase 2 detected. Linrodostat restored T-cell proliferation in a mixed-lymphocyte reaction of T cells and allogeneic IDO1-expressing dendritic cells. In vivo, linrodostat reduced kynurenine levels in human tumor xenograft models, exhibiting significant PD activity. Linrodostat demonstrated a PK/PD relationship in the xenograft model, preclinical species, and samples from patients with advanced cancers, with high oral bioavailability in preclinical species and low to moderate systemic clearance. Our data demonstrate that linrodostat potently and specifically inhibits IDO1 to block an immunosuppressive mechanism that could be responsible for tumor escape from host immune surveillance with favorable PK/PD characteristics that support clinical development.


Assuntos
Acetamidas/uso terapêutico , Imunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Quinolinas/uso terapêutico , Acetamidas/farmacologia , Administração Oral , Animais , Cães , Feminino , Haplorrinos , Voluntários Saudáveis , Humanos , Quinolinas/farmacologia , Ratos
5.
Proc Natl Acad Sci U S A ; 115(13): 3249-3254, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531094

RESUMO

For cancer cells to survive and proliferate, they must escape normal immune destruction. One mechanism by which this is accomplished is through immune suppression effected by up-regulation of indoleamine 2,3-dioxygenase (IDO1), a heme enzyme that catalyzes the oxidation of tryptophan to N-formylkynurenine. On deformylation, kynurenine and downstream metabolites suppress T cell function. The importance of this immunosuppressive mechanism has spurred intense interest in the development of clinical IDO1 inhibitors. Herein, we describe the mechanism by which a class of compounds effectively and specifically inhibits IDO1 by targeting its apo-form. We show that the in vitro kinetics of inhibition coincide with an unusually high rate of intrinsic enzyme-heme dissociation, especially in the ferric form. X-ray crystal structures of the inhibitor-enzyme complexes show that heme is displaced from the enzyme and blocked from rebinding by these compounds. The results reveal that apo-IDO1 serves as a unique target for inhibition and that heme lability plays an important role in posttranslational regulation.


Assuntos
Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/química , Apoproteínas/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Células HeLa , Heme/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Concentração Inibidora 50 , Mioglobina/química
6.
Methods ; 37(3): 280-8, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16308157

RESUMO

Microarray technology enables high-throughput testing of gene expression to investigate various neuroscience related questions. This in turn creates a demand for scalable methods to confirm microarray results and the opportunity to use this information to discover and test novel pathways and therapeutic applications. Discovery of new central nervous system (CNS) treatments requires a comprehensive understanding of multiple aspects including the biology of a target, the pathophysiology of a disease/disorder, and the selection of successful lead compounds as well as efficient biomarker and drug disposition strategies such as absorption (how a drug is absorbed), distribution (how a drug spreads through an organism), metabolism (chemical conversion of a drug, if any, and into which substances), and elimination (how is a drug eliminated) (ADME). Understanding of the toxicity is also of paramount importance. These approaches, in turn, require novel high-content integrative assay technologies that provide thorough information about changes in cell biology. To increase efficiency of profiling, characterization, and validation, we established a new screening strategy that combines high-content image-based testing on Array Scan (Cellomics) with a confocal system and the multiplexed TaqMan RT-PCR method for quantitative mRNA expression analysis. This approach could serve as an interface between high-throughput microarray testing and specific application of markers discovered in the course of a microarray experiment. Markers could pinpoint activation or inhibition of a molecular pathway related, for instance, to neuronal viability. We demonstrate the successful testing of the same cell population in an image-based translocational assay followed by poly(A) mRNA capture and multiplexed single tube RT-PCR. In addition, Ciphergen ProteinChip analysis can be performed on the supernatant, thus allowing significant complementarity in the data output and interpretation by also including the capture and initial analysis of proteins in the integrative approach presented. We have determined various conditions including the number of cells, RT and PCR optimization, which are necessary for successful detection and consequent assay integration. We also show the successful convergence of various different approaches and multiplexing of different targets within a single real-time PCR tube. This novel integrative technological approach has utility for CNS drug discovery, target and biomarker identification, selection and characterization as well as for the study of toxicity- and adverse event-associated molecular mechanisms.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Indústria Farmacêutica/métodos , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Confocal , Análise Serial de Proteínas/métodos , Proteína Quinase C/análise , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transporte Proteico , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes
7.
Comb Chem High Throughput Screen ; 7(8): 727-32, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15578934

RESUMO

To increase efficiency of high throughput gene expression profiling, we established a new TaqMan RT-PCR (real-time reverse transcriptase-polymerase chain reaction with internal probes for the quantification of PCR products) method for quantitative mRNA expression analysis. In this procedure, we utilized poly-A mRNA capture plates and validated a multiplexed single tube RT-PCR assay for cell culture applications, including compound testing via gene induction measurement. In the described procedure, all steps including RNA extraction, RT and PCR are performed in the same tube, thus significantly enhancing throughput of this method. Optimization of conditions, including the number of cells necessary for detection of mRNA signal was performed. With a relatively abundant message such as GAPDH, we saw a linear response for all of the concentrations tested, from 10,000 cells to 10 cells. We have also demonstrated multiplexing of different targets within the PCR reactions. In these experiments, we combined VIC-labeled probes for GAPDH with several FAM-labeled probes obtained from Assays On Demand (Applied Biosystems). In the reported experiments, multiplexing did not affect the efficiency of RT-PCR. We also demonstrated the utility of this technology for compound screening applications. The described technology also has the potential to accelerate studies on target and biomarker identification and toxicity assessment in ADMET (absorption, distribution, metabolism, elimination, and toxicity) testing.


Assuntos
Perfilação da Expressão Gênica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Contagem de Células , Células Cultivadas , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Células K562 , Poli A/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação
8.
Biochem Biophys Res Commun ; 313(2): 343-50, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14684166

RESUMO

The nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) encodes an RNA-dependent RNA polymerase (RdRp) which is essential for viral replication. NS5B expression in bacteria generated 20- to 50-fold lower yield and 100-fold less product per mol of enzyme for gentoype 1a RdRp than type 1b. Further, unlike type 1b RdRp, type 1a enzyme failed to exhibit cooperative properties in the assays described herein. Differences in thermal stability may partially account for the inability to efficiently oligomerize. Superose gel filtration analyses confirm differences between these RdRp preparations, although affinity for the column rather than size may account for the differences in migration. To further address this complexity, a panel of RdRp type 1a-type 1b chimeras were evaluated and implicate a role for the thumb subdomain of genotype 1b RdRp as critical for cooperative function.


Assuntos
Hepacivirus/enzimologia , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Cromatografia em Gel , Dicroísmo Circular , Primers do DNA/genética , Primers do DNA/metabolismo , Estabilidade Enzimática , Escherichia coli/metabolismo , Genótipo , Temperatura Alta , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Dados de Sequência Molecular , RNA/metabolismo , RNA Polimerase Dependente de RNA/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas não Estruturais Virais/metabolismo
9.
Biochem Biophys Res Commun ; 311(3): 672-7, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-14623324

RESUMO

Recently, a benzo-1,2,4-thiadiazine was shown to be a potent, specific inhibitor of the hepatitis C virus (HCV) RNA polymerase [J. Biol. Chem. 277 (2002) 32327]. Herein, we present several lines of evidence to demonstrate that thiadiazine compound 4 (C(21)H(21)N(3)O(4)S) is highly synergistic with interferon-alpha (IFN-alpha) and disrupts HCV replicon RNA synthesis with a distinct kinetic profile. A time course analysis after a single treatment with 5 microM compound 4 showed a loss of viral RNA consistent with replicon RNA half-life, suggesting inhibition of 90% of ongoing or newly initiated replicative intermediates. This finding is consistent with the mechanism of action recently reported for compound 4, an RNA synthesis initiation inhibitor [J. Biol. Chem. 278 (2003) 16602]. Further, unlike IFN-alpha, an immediate reduction of HCV replicon RNA synthesis was apparent upon addition of compound 4. Treatment with IFN-alpha showed a delay of approximately 4h prior to inhibition of viral RNA replication, consistent with its signaling kinetics.


Assuntos
Antivirais/farmacocinética , Hepacivirus/genética , Inibidores da Síntese de Ácido Nucleico/farmacocinética , RNA/metabolismo , Tiadiazinas/farmacocinética , Linhagem Celular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Interferon-alfa/metabolismo , Cinética , Modelos Estatísticos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
10.
Virology ; 312(2): 270-80, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12919733

RESUMO

The GB virus-B (GBV-B) nonstructural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase (RdRp) with greater than 50% sequence similarity to the hepatitis C virus (HCV) NS5B. Recombinant GBV-B NS5B was reported to possess RdRp activity (W. Zhong et al., 2000, J. Viral Hepat. 7, 335-342). In this study, the GBV-B RdRp was examined more thoroughly for different RNA synthesis activities, including primer-extension, de novo initiation, template switch, terminal nucleotide addition, and template specificity. The results can be compared with previous characterizations of the HCV RdRp. The two RdRps share similarities in terms of metal ion and template preference, the abilities to add nontemplated nucleotides, perform both de novo initiation and extension from a primer, and switch templates. However, several differences in RNA synthesis between the GBV-B and HCV RdRps were observed, including (i) optimal temperatures for activity, (ii) ranges of Mn(2+) concentration tolerated for activity, and (iii) cation requirements for de novo RNA synthesis and terminal transferase activity. To assess whether the recombinant GBV-B RdRp may represent a relevant surrogate system for testing HCV antiviral agents, two compounds demonstrated to be active at nanomolar concentrations against HCV NS5B were tested on the GBV RdRp. A chain terminating nucleotide analog could prevent RNA synthesis, while a nonnucleoside HCV inhibitor was unable to affect RNA synthesis by the GBV RdRp.


Assuntos
Vírus GB B/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Sequência de Bases , Vírus GB B/efeitos dos fármacos , Dados de Sequência Molecular , Nucleotídeos/metabolismo , RNA Viral/biossíntese , RNA Viral/genética , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/isolamento & purificação , Moldes Genéticos
11.
J Biol Chem ; 277(41): 38322-7, 2002 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-12167642

RESUMO

The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRp), the primary catalytic enzyme of the HCV replicase complex. We established a biochemical RNA synthesis assay, using purified recombinant NS5B lacking the C-terminal 21 amino acid residues, to identify potential polymerase inhibitors from a high throughput screen of the GlaxoSmithKline proprietary compound collection. The benzo-1,2,4-thiadiazine compound 1 was found to be a potent, highly specific inhibitor of NS5B. This agent interacts directly with the viral polymerase and inhibits RNA synthesis in a manner noncompetitive with respect to GTP. Furthermore, in the absence of an in vitro-reconstituted HCV replicase assay employing viral and host proteins, the ability of compound 1 to inhibit NS5B-directed viral RNA replication was determined using the Huh7 cell-based HCV replicon system. Compound 1 reduced viral RNA in replicon cells with an IC(50) of approximately 0.5 microm, suggesting that the inhibitor was able to access the perinuclear membrane and inhibit the polymerase activity in the context of a replicase complex. Preliminary structure-activity studies on compound 1 led to the identification of a modified inhibitor, compound 4, showing an improvement in both biochemical and cell-based potency. Lastly, data are presented suggesting that these compounds interfere with the formation of negative and positive strand progeny RNA by a similar mode of action. Investigations are ongoing to assess the potential utility of such agents in the treatment of chronic HCV disease.


Assuntos
Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , RNA Polimerase Dependente de RNA/metabolismo , Tiadiazinas/farmacologia , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular , Dicroísmo Circular , Avaliação Pré-Clínica de Medicamentos , Estabilidade Enzimática , Hepacivirus/genética , Humanos , Estrutura Molecular , Desnaturação Proteica , RNA/metabolismo , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...