RESUMO
Natural history collections are increasingly valued as genomic resources. Their specimens reflect the combined efforts of collectors and curators over hundreds of years. For many rare or endangered species, specimens are the only readily available source of DNA. We leveraged specimens from a historical collection to study the evolutionary history of wood-partridges in the genus Dendrortyx. The three Dendrortyx species are found in the highlands of central Mexico and Central America south to Costa Rica. One of these species is endangered, and in general, Dendrortyx are secretive and poorly represented in tissue collections. We extracted DNA from historical museum specimens and sequenced ultraconserved elements (UCEs) and mitochondrial DNA (mtDNA) to assess their phylogeny and divergence times. Phylogenies built from hundreds to thousands of nuclear markers were well resolved and largely congruent with an mtDNA phylogeny. The divergence times revealed an unusually old avian divergence across the Isthmus of Tehuantepec in the Pliocene around 3.6 million years ago. Combined with other recent studies, our results challenge the general pattern that highland bird divergences in Mesoamerica are relatively young and influenced by the Pleistocene glacial cycles compared to the older divergences of reptiles and plants, which are thought to overlap more with periods of mountain formation. We also found evidence for monophyletic genetic lineages in mountain ranges within the widespread D. macroura, which should be investigated further with integrative taxonomic methods. Our study demonstrates the power of museum genomics to provide insight into the evolutionary histories of groups where modern samples are lacking.
Assuntos
Ecossistema , Galliformes/genética , Especiação Genética , Genômica , Museus , Madeira , Animais , Sequência de Bases , Biodiversidade , América Central , DNA Mitocondrial/genética , Florestas , México , Filogenia , FilogeografiaRESUMO
Molecular studies have uncovered significant diversity in the Mexican Highlands, leading to the description of many new endemic species. DNA approaches to this kind of species discovery have included both mitochondrial DNA (mtDNA) sequencing and multilocus genomic methods. While these marker types have often been pitted against one another, there are benefits to deploying them together, as linked mtDNA data can provide the bridge between uncovering lineages through rigorous multilocus genomic analysis and identifying lineages through comparison to existing mtDNA databases. Here, we apply one class of multilocus genomic marker, ultraconserved elements (UCEs), and linked mtDNA data to a species complex of frogs (Sarcohyla bistincta, Hylidae) found in the Mexican Highlands. We generated data from 1,891 UCEs, which contained 1,742 informative SNPs for S. bistincta and closely related species and captured mitochondrial genomes for most samples. Genetic analyses based on both whole loci and SNPs agree there are six to seven distinct lineages within what is currently described as S. bistincta. Phylogenies from UCEs and mtDNA mostly agreed in their topologies, and the few differences suggested a more complex evolutionary history of the mtDNA marker. Our study demonstrates that the Mexican Highlands still hold substantial undescribed diversity, making their conservation a particularly urgent goal. The Trans-Mexican Volcanic Range stands out as a significant geographic feature in Sarcohyla and may have acted as a dispersal corridor for S. bistincta to spread to the north. Combining multilocus genomic data with linked mtDNA data is a useful approach for identifying potential new species and associating them with already described taxa, which will be especially important in groups with undescribed subadult phenotypes and cryptic species.
RESUMO
BACKGROUND: Haldane's Rule, the tendency for the heterogametic sex to show reduced fertility in hybrid crosses, can obscure the signal of gene flow in mtDNA between species where females are heterogametic. Therefore, it is important when studying speciation and species limits in female-heterogametic species like birds to assess the signature of gene flow in the nuclear genome as well. We studied introgression of microsatellites and mtDNA across a secondary contact zone between coastal and interior lineages of Western Scrub-Jays (Aphelocoma californica) to test for a signature of Haldane's Rule: a narrower cline of introgression in mtDNA compared to nuclear markers. RESULTS: Our initial phylogeographic analysis revealed that there is only one major area of contact between coastal and interior lineages and identified five genetic clusters with strong spatial structuring: Pacific Slope, Interior US, Edwards Plateau (Texas), Northern Mexico, and Southern Mexico. Consistent with predictions from Haldane's Rule, mtDNA showed a narrower cline than nuclear markers across a transect through the hybrid zone. This result is not being driven by female-biased dispersal because neutral diffusion analysis, which included estimates of sex-specific dispersal rates, also showed less diffusion of mtDNA. Lineage-specific plumage traits were associated with nuclear genetic profiles for individuals in the hybrid zone, indicating that these differences are under genetic control. CONCLUSIONS: This study adds to a growing list of studies that support predictions of Haldane's Rule using cline analysis of multiple loci of differing inheritance modes, although alternate hypotheses like selection on different mtDNA types cannot be ruled out. That Haldane's Rule appears to be operating in this system suggests a measure of reproductive isolation between the Pacific Slope and interior lineages. Based on a variety of evidence from the phenotype, ecology, and genetics, we recommend elevating three lineages to species level: A. californica (Pacific Slope); A. woodhouseii (Interior US plus Edwards Plateau plus Northern Mexico); A. sumichrasti (Southern Mexico). The distinctive Edwards Plateau population in Texas, which was monophyletic in mtDNA except for one individual, should be studied in greater detail given habitat threat.
Assuntos
DNA Mitocondrial/genética , Especiação Genética , Passeriformes/genética , Animais , Núcleo Celular/genética , Feminino , Fluxo Gênico , Hibridização Genética , Masculino , México , Repetições de Microssatélites , Dados de Sequência Molecular , Passeriformes/classificação , Isolamento ReprodutivoRESUMO
We present a new software package (HZAR) that provides functions for fitting molecular genetic and morphological data from hybrid zones to classic equilibrium cline models using the Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm. The software applies likelihood functions appropriate for different types of data, including diploid and haploid genetic markers and quantitative morphological traits. The modular design allows flexibility in fitting cline models of varying complexity. To facilitate hypothesis testing, an autofit function is included that allows automated model selection from a set of nested cline models. Cline parameter values, such as cline centre and cline width, are estimated and may be compared statistically across clines. The package is written in the R language and is available through the Comprehensive R Archive Network (CRAN; http://cran.r-project.org/). Here, we describe HZAR and demonstrate its use with a sample data set from a well-studied hybrid zone in western Panama between white-collared (Manacus candei) and golden-collared manakins (M. vitellinus). Comparisons of our results with previously published results for this hybrid zone validate the hzar software. We extend analysis of this hybrid zone by fitting additional models to molecular data where appropriate.
Assuntos
Hibridização Genética , Passeriformes/genética , Software , Algoritmos , Animais , Marcadores Genéticos , Modelos Genéticos , Panamá , Passeriformes/classificaçãoRESUMO
Next generation sequencing (NGS) technologies are revolutionizing many biological disciplines but have been slow to take root in phylogeography. This is partly due to the difficulty of using NGS to sequence orthologous DNA fragments for many individuals at low cost. We explore cases of recent divergence in four phylogenetically diverse avian systems using a method for quick and cost-effective generation of primary DNA sequence data using pyrosequencing. NGS data were processed using an analytical pipeline that reduces many reads into two called alleles per locus per individual. Using single nucleotide polymorphisms (SNPs) mined from the loci, we detected population differentiation in each of the four bird systems, including: a case of ecological speciation in rails (Rallus); a rapid postglacial radiation in the genus Junco; recent in situ speciation among hummingbirds (Trochilus) in Jamaica; and subspecies of white-crowned sparrows (Zonotrichia leucophrys) along the Pacific coast. The number of recovered loci aligning closely to chromosomal locations on the zebra finch (Taeniopygia guttata) genome was highly correlated to the size of the chromosome, suggesting that loci are randomly distributed throughout the genome. Using eight loci found in Zonotrichia and Junco lineages, we were also able to generate a species tree of these sparrow sister genera, demonstrating the potential of this method for generating data amenable to coalescent-based analysis. We discuss improvements that should enhance the method's utility for primary data generation.