Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232920

RESUMO

Colorectal cancer is a common cancer with a poor prognosis in both males and females. The influence of bisphenol A (BPA), a widely used environmental contaminant, in colon cancer development and progression is not well identified, in spite of the fact that the most common mode of exposure to BPA is ingestion. The aim of this work is to elucidate the carcinogenic effects of BPA in the colon in vitro. We analyzed BPA's effects on human colon epithelial (HCoEpiC) and colon cancer (HCT116) cells. BPA exerted cytotoxic effects and augmented the 5FU cytotoxicity on both cell lines at high doses, while it did not show this effect at low doses. Therefore, we focused on studying the effects of low-dose (0.0043 nM) exposure on normal colonic epithelial cells for a long period of time (two months), which is more consistent with environmental exposure levels and patterns. BPA increased cellular invasiveness through collagen and the ability to anchorage-independent cell growth, as measured by colony formation in soft agar, which could support oncogenicity. To gain insights into the mechanism of these actions, we performed transcriptomic analysis using next-generation sequencing, which revealed 340 differentially expressed transcripts by BPA in HCT116 and 75 in HCoEpiC. These transcripts belong in many cancer-related pathways such as apoptosis, cell proliferation, signal transduction, and angiogenesis. Some of the significant genes (FAM83H, CXCL12, PITPNA, HMOX1, DGKZ, NR5A2, VMP1, and ID1) were confirmed by quantitative RT-PCR. Furthermore, BPA induced the phosphorylation of protein kinases such as JNK1/2/3, GSK-3α/ß, AMPKα1, AKT1/2/3, AMPKα2, HSP27, ß-catenin, STAT2, Hck, Chk2, FAK, and PRAS40 in HCoEpiC, as well as GSK-3α/ß, p53, AKT1/2/3, p70 S6 kinase, and WNK1 in HCT116. The majority of these proteins are involved in potential carcinogenic pathways. Taken together, these data suggest that BPA plays a role in colon carcinogenesis, and they provide insights into the molecular mechanisms of colon epithelial cell transformation by BPA. Increasing exposure to environmental toxins such as BPA can explain the increasing incidence of colorectal cancer.


Assuntos
Neoplasias do Colo , beta Catenina , Ágar , Compostos Benzidrílicos/toxicidade , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Fluoruracila , Células HCT116 , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Mucosa/metabolismo , Fenóis , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , beta Catenina/metabolismo
2.
World J Gastrointest Oncol ; 14(9): 1637-1653, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36187394

RESUMO

Colorectal cancer (CRC) is a devastating disease, mainly because of metastasis. As a result, there is a need to better understand the molecular basis of invasion and metastasis and to identify new biomarkers and therapeutic targets to aid in managing these tumors. The actin cytoskeleton and actin-binding proteins are known to play an important role in the process of cancer metastasis because they control and execute essential steps in cell motility and contractility as well as cell division. Caldesmon (CaD) is an actin-binding protein encoded by the CALD1 gene as multiple transcripts that mainly encode two protein isoforms: High-molecular-weight CaD, expressed in smooth muscle, and low-molecular weight CaD (l-CaD), expressed in nonsmooth muscle cells. According to our comprehensive review of the literature, CaD, particularly l-CaD, plays a key role in the development, metastasis, and resistance to chemoradiotherapy in colorectal, breast, and urinary bladder cancers and gliomas, among other malignancies. CaD is involved in many aspects of the carcinogenic hallmarks, including epithelial mesenchymal transition via transforming growth factor-beta signaling, angiogenesis, resistance to hormonal therapy, and immune evasion. Recent data show that CaD is expressed in tumor cells as well as in stromal cells, such as cancer-associated fibroblasts, where it modulates the tumor microenvironment to favor the tumor. Interestingly, CaD undergoes selective tumor-specific splicing, and the resulting isoforms are generally not expressed in normal tissues, making these transcripts ideal targets for drug design. In this review, we will analyze these features of CaD with a focus on CRC and show how the currently available data qualify CaD as a potential candidate for targeted therapy in addition to its role in the diagnosis and prognosis of cancer.

3.
Curr Pharm Des ; 27(18): 2156-2169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33655853

RESUMO

Long-lasting subclinical inflammation is associated with a wide range of human diseases, particularly at a middle and older age. Recent reports showed that there is a direct causal link between inflammation and cancer development, as several cancers were found to be associated with chronic inflammatory conditions. In patients with cancer, healthy endothelial cells regulate vascular homeostasis, and it is believed that they can limit tumor growth, invasiveness, and metastasis. Conversely, dysfunctional endothelial cells that have been exposed to the inflammatory tumor microenvironment can support cancer progression and metastasis. Dysfunctional endothelial cells can exert these effects via diverse mechanisms, including dysregulated adhesion, permeability, and activation of NF-κB and STAT3 signaling. In this review, we highlight the role of vascular inflammation in predisposition to cancer within the context of two common disease risk factors: obesity and smoking. In addition, we discuss the molecular triggers, pathophysiological mechanisms, and the biological consequences of vascular inflammation during cancer development and metastasis. Finally, we summarize the current therapies and pharmacological agents that target vascular inflammation and endothelial dysfunction.


Assuntos
Neoplasias , Doenças Vasculares , Idoso , Células Endoteliais , Humanos , Inflamação , NF-kappa B , Neoplasias/tratamento farmacológico , Microambiente Tumoral
4.
Front Nutr ; 8: 741811, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35372458

RESUMO

Aim and Background: A growing body of evidence supports the impact of intermittent fasting (IF) on normalizing body weight and that the interaction between body genes and environmental factors shapes human susceptibility to developing obesity. FTO gene is one of these genes with metabolic effects related to energy metabolism and body fat deposition. This research examined the changes in FTO gene expression upon Ramadan intermittent fasting (RIF) in a group of metabolically healthy subjects with overweight and obesity. Methods: Sixty-three (63) subjects were recruited, of which 57 (17 males and 40 females, mean age 38.4 ± 11.2 years) subjects with overweight and obesity (BMI = 29.89 ± 5.02 kg/m2were recruited and monitored before and at the end of Ramadan month), and 6 healthy subjects with normal BMI (21.4 ± 2.20 kg/m2) recruited only to standardize the reference for normal levels of FTO gene expression. In the two-time points, anthropometric, biochemical, and dietary assessments were undertaken, and FTO gene expression tests were performed using RNA extracted from the whole blood sample. Results: In contrast to normal BMI subjects, the relative gene expressions in overweight/obese were significantly decreased at the end of Ramadan (-32.30%, 95% CI-0.052 -0.981) in comparison with the pre-fasting state. Significant reductions were found in body weight, BMI, fat mass, body fat percent, hip circumference, LDL, IL-6, TNF-α (P<0.001), and in waist circumference (P<0.05), whilst HDL and IL-10 significantly increased (P<0.001) at the end of Ramadan in comparison with the pre-fasting levels. Binary logistic regression analysis for genetic expressions showed no significant association between high-energy intake, waist circumference, or obesity and FTO gene expression. Conclusions: RIF is associated with the downregulation of the FTO gene expression in subjects with obesity, and this may explain, at least in part, its favorable metabolic effects. Hence, RIF presumably may entail a protective impact against body weight gain and its adverse metabolic-related derangements in subjects with obesity.

5.
Sci Rep ; 6: 37775, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27901050

RESUMO

Targetting the ubiquitin pathway is an attractive strategy for cancer therapy. The inhibitor of the ubiquitin-like molecule NEDD8 pathway, MLN4924 (Pevonedistat) is in Phase II clinical trials. Protection of healthy cells from the induced toxicity of the treatment while preserving anticancer efficacy is a highly anticipated outcome in chemotherapy. Cyclotherapy was proposed as a promising approach to achieve this goal. We found that cytostatic activation of p53 protects cells against MLN4924-induced toxicity and importantly the effects are reversible. In contrast, cells with mutant or no p53 remain sensitive to NEDD8 inhibition. Using zebrafish embryos, we show that MLN4924-induced apoptosis is reduced upon pre-treatment with actinomycin D in vivo. Our studies show that the cellular effects of NEDD8 inhibition can be manipulated based on the p53 status and that NEDD8 inhibitors can be used in a p53-based cyclotherapy protocol to specifically target cancer cells devoid of wild type p53 function, while healthy cells will be protected from the induced toxicity.


Assuntos
Ciclopentanos/farmacologia , Proteína NEDD8/antagonistas & inibidores , Pirimidinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células HCT116 , Humanos , Ubiquitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...