Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
2.
Hepatology ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922826

RESUMO

Myriad associations between the microbiome and various facets of liver physiology and pathology have been described in the literature. Building on descriptive and correlative sequencing studies, metagenomic studies are expanding our collective understanding of the functional and mechanistic role of the microbiome as mediators of the gut-liver axis. Based on these mechanisms, the functional activity of the microbiome represents an attractive, tractable, and precision medicine therapeutic target in several liver diseases. Indeed, several therapeutics have been used in liver disease even before their description as a microbiome dependent approach. To bring successful microbiome-targeted and -inspired therapies to the clinic, a comprehensive appreciation of the different approaches to influence, collaborate with, or engineer the gut microbiome to coopt a disease relevant function of interest in the right patient is key. Herein, we describe the various levels at which the microbiome can be targeted - from prebiotics, probiotics, synbiotics and antibiotics, to microbiome reconstitution and precision microbiome engineering. Assimilating data from preclinical animal models, human studies as well as clinical trials, we describe the potential for and rationale behind studying such therapies across several liver diseases, including metabolic dysfunction associated steatotic liver disease, alcohol associated liver disease, cirrhosis, and hepatic encephalopathy, as well as liver cancer. Lastly, we discuss lessons learnt from previous attempts at developing such therapies, the regulatory framework that needs to be navigated and the challenges that remain.

3.
Hepatology ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820071

RESUMO

New guidelines for the definitions of steatotic liver disease have named the entity of metabolic dysfunction and alcohol-associated liver disease (MetALD) as an overlap condition of metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease. There is a broad range of therapeutics in all stages of development for MASLD, but these therapeutics, in general, have not been studied in patients with significant ongoing alcohol use. In this review, we discuss the current understanding of the endogenous and exogenous risks for MASLD and MetALD. Rational strategies for therapeutic intervention in MetALD include biopsychosocial interventions, alcohol use cessation strategies, including the use of medications for alcohol use disorder, and judicious use of therapeutics for steatotic liver disease. Therapeutics with promise for MetALD include incretin-based therapies, FGF21 agonists, thyroid hormone receptor beta agonists, sodium-glucose co-transporter 2 inhibitors, and agents to modify de novo lipogenesis. Currently, glucagon-like peptide 1 receptor agonists and peroxisome proliferator-activated receptor γ agonists have the largest body of literature supporting their use in MASLD, and there is a paucity of agents in trials for alcohol-associated liver disease. From existing studies, it is not clear if unique therapeutics or a combinatorial approach are needed for MetALD. Further elucidation of the safety and benefits of MASLD-related therapies is of paramount importance for advancing therapeutics for MetALD in carefully designed inclusive clinical trials.

4.
Biomedicines ; 12(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38672154

RESUMO

OBJECTIVE: Circulating exosome-enriched extracellular vesicles (EVs) have drawn considerable importance in obesity-related insulin-resistance (IR). We sought to compare the proteomics profile of serum exosomes from normal individuals and those with obesity and IR. METHODS: We isolated serum exosomes from male subjects with obesity and insulin resistance (Ob-IR, HOMA-IR > 2.0) and lean/overweight insulin-sensitive (Normal (N), HOMA-IR < 2.0) individuals. The differential protein expression between the two groups was detected by a label-free quantitative mass spectrometry analysis followed by GO annotation and ingenuity pathway analysis (IPA). RESULTS: We identified 23 upregulated and 46 downregulated proteins between Ob-IR and N groups. Some of these proteins are involved in altering insulin signaling (VPS13C, TBC1D32, TTR, and ADIPOQ), inflammation (NFκB and CRP), and B-cell proliferation/activation (IGLV4-69, IGKV1D-13, and IGHV4-28). GO analysis revealed that the differentially expressed proteins (DEPs) are mainly involved in regulating immune cell activation and are located in extracellular space. IPA analysis showed that top molecules mediating IR, inflammation and B-cell activation were upregulated in Ob-IR subjects compared to N subjects. CONCLUSIONS: Serum exosomal proteins can be used as biomarkers to identify the future risk of diabetes and a therapeutic target to prevent or slow down the progression of diabetes in high-risk individuals.

6.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38175729

RESUMO

Intrahepatic macrophages in nonalcoholic steatohepatitis (NASH) are heterogenous and include proinflammatory recruited monocyte-derived macrophages. The receptor for advanced glycation endproducts (RAGE) is expressed on macrophages and can be activated by damage associated molecular patterns (DAMPs) upregulated in NASH, yet the role of macrophage-specific RAGE signaling in NASH is unclear. Therefore, we hypothesized that RAGE-expressing macrophages are proinflammatory and mediate liver inflammation in NASH. Compared with healthy controls, RAGE expression was increased in liver biopsies from patients with NASH. In a high-fat, -fructose, and -cholesterol-induced (FFC)-induced murine model of NASH, RAGE expression was increased, specifically on recruited macrophages. FFC mice that received a pharmacological inhibitor of RAGE (TTP488), and myeloid-specific RAGE KO mice (RAGE-MKO) had attenuated liver injury associated with a reduced accumulation of RAGE+ recruited macrophages. Transcriptomics analysis suggested that pathways of macrophage and T cell activation were upregulated by FFC diet, inhibited by TTP488 treatment, and reduced in RAGE-MKO mice. Correspondingly, the secretome of ligand-stimulated BM-derived macrophages from RAGE-MKO mice had an attenuated capacity to activate CD8+ T cells. Our data implicate RAGE as what we propose to be a novel and potentially targetable mediator of the proinflammatory signaling of recruited macrophages in NASH.


Assuntos
Hepatite , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Camundongos , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo
7.
Biosens Bioelectron ; 248: 115896, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176252

RESUMO

A common challenge in microfluidic cell cultures has to do with analysis of cell function without replacing a significant fraction of the culture volume and disturbing local concentration gradients of signals. To address this challenge, we developed a microfluidic cell culture device with an integrated bioanalysis unit to enable on-chip analysis of picoliter volumes of cell-conditioned media. The culture module consisted of an array of 140 microwells with a diameter of 300 m which were made low-binding to promote organization of cells into 3D spheroids. The bioanalysis module contained a droplet generator unit, 15 micromechanical valves and reservoirs loaded with reagents. Each 0.8 nL droplet contained an aliquot of conditioned media mixed with assay reagents. The use of microvalves allowed us to load enzymatic assay and immunoassay into sequentially generated droplets for detection of glucose and albumin, respectively. As a biological application of the microfluidic device, we evaluated hormonal stimulation and glucose consumption of hepatic spheroids. To mimic physiological processes occurring during feeding and fasting, hepatic spheroids were exposed to pancreatic hormones, insulin or glucagon. The droplet-based bioanalysis module was used to measure uptake or release of glucose upon hormonal stimulation. In the future, we intend to use this microfluidic device to mimic and measure pathophysiological processes associated with hepatic insulin resistance and diabetes in the context of metabolic syndrome.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Microfluídica , Meios de Cultivo Condicionados , Glucose/análise
13.
ACS Nano ; 17(23): 23584-23594, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033295

RESUMO

Extracellular vesicles (EVs) are nanoscale lipid bilayer particles secreted by cells. EVs may carry markers of the tissue of origin and its disease state, which makes them incredibly promising for disease diagnosis and surveillance. While the armamentarium of EV analysis technologies is rapidly expanding, there remains a strong need for multiparametric analysis with single EV resolution. Nanoprojectile (NP) secondary ion mass spectrometry (NP-SIMS) relies on bombarding a substrate of interest with individual gold NPs resolved in time and space. Each projectile creates an impact crater of 10-20 nm in diameter while molecules emitted from each impact are mass analyzed and recorded as individual mass spectra. We demonstrate the utility of NP-SIMS for statistical analysis of single EVs derived from normal liver cells (hepatocytes) and liver cancer cells. EVs were captured on antibody (Ab)-functionalized gold substrate and then labeled with Abs carrying lanthanide (Ln) MS tags (Ab@Ln). These tags targeted four markers selected for identifying all EVs, and specific to hepatocytes or liver cancer. NP-SIMS was used to detect Ab@Ln-tags colocalized on the same EV and to construct scatter plots of surface marker expression for thousands of EVs with the capability of categorizing individual EVs. Additionally, NP-SIMS revealed information about the chemical nanoenvironment where targeted moieties colocalized. Our approach allowed analysis of population heterogeneity with single EV resolution and distinguishing between hepatocyte and liver cancer EVs based on surface marker expression. NP-SIMS holds considerable promise for multiplexed analysis of single EVs and may become a valuable tool for identifying and validating EV biomarkers of cancer and other diseases.


Assuntos
Vesículas Extracelulares , Neoplasias Hepáticas , Humanos , Espectrometria de Massa de Íon Secundário , Linhagem Celular , Vesículas Extracelulares/química , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo
14.
J Clin Med ; 12(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834859

RESUMO

Diagnosing and managing metabolic dysfunction-associated steatotic liver disease (MASLD) remains a major challenge in primary care due to lack of agreement on diagnostic tools, difficulty in identifying symptoms and determining their cause, absence of approved pharmacological treatments, and limited awareness of the disease. However, prompt diagnosis and management are critical to preventing MASLD from progressing to more severe forms of liver disease. This highlights the need to raise awareness and improve understanding of MASLD among both patients and physicians. The patient perspective is invaluable to advancing our knowledge of this disease and how to manage it, as their perspectives have led to the growing recognition that patients experience subtle symptoms and that patient-reported outcomes should be incorporated into drug development. This review and expert opinion examine MASLD and metabolic dysfunction-associated steatohepatitis from the patient and physician perspective from pre-diagnosis to diagnosis and early care, through to progression to advanced liver damage. Specifically, the paper dives into the issues patients and physicians experience, and, in turn, what is required to improve diagnosis and management, including tips and tools to empower patients and physicians dealing with MASLD.

15.
Am J Pathol ; 193(12): 1887-1899, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37689385

RESUMO

Perturbations in lipid and protein homeostasis induce endoplasmic reticulum (ER) stress in metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease. Lipotoxic and proteotoxic stress can activate the unfolded protein response (UPR) transducers: inositol requiring enzyme1α, PKR-like ER kinase, and activating transcription factor 6α. Collectively, these pathways induce expression of genes that encode functions to resolve the protein folding defect and ER stress by increasing the protein folding capacity of the ER and degradation of misfolded proteins. The ER is also intimately connected with lipid metabolism, including de novo ceramide synthesis, phospholipid and cholesterol synthesis, and lipid droplet formation. Following their activation, the UPR transducers also regulate lipogenic pathways in the liver. With persistent ER stress, cellular adaptation fails, resulting in hepatocyte apoptosis, a pathological marker of liver disease. In addition to the ER-nucleus signaling activated by the UPR, the ER can interact with other organelles via membrane contact sites. Modulating intracellular communication between ER and endosomes, lipid droplets, and mitochondria to restore ER homeostasis could have therapeutic efficacy in ameliorating liver disease. Recent studies have also demonstrated that cells can convey ER stress by the release of extracellular vesicles. This review discusses lipotoxic ER stress and the central role of the ER in communicating ER stress to other intracellular organelles in MASLD pathogenesis.


Assuntos
Estresse do Retículo Endoplasmático , Hepatopatia Gordurosa não Alcoólica , Humanos , Estresse do Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas , Hepatopatia Gordurosa não Alcoólica/metabolismo , Retículo Endoplasmático/metabolismo
16.
Aliment Pharmacol Ther ; 58(10): 1075-1085, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37718576

RESUMO

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is caused by mutations in SERPINA1, which encodes alpha-1 antitrypsin, a protease inhibitor (Pi). Individuals with AATD and the homozygous Pi*ZZ genotype have variable risk of progressive liver disease but the influence of comorbid lung disease is poorly understood. AIMS: To characterise patients with AATD Pi*ZZ and liver disease (AATD-LD-Pi*ZZ) with or without lung disease and describe liver disease-related clinical events longitudinally. METHODS: This was an observational cohort study of patients in the Mayo Clinic Healthcare System (January 2000-September 2021). Patients were identified using diagnosis codes and natural language processing. Fibrosis stage (F0-F4) was assessed using a hierarchical approach at baseline (90 days before or after the index date) and follow-up. Clinical events associated with liver disease progression were assessed. RESULTS: AATD-LD-Pi*ZZ patients with lung disease had a longer median time from AATD diagnosis to liver disease diagnosis versus those without lung disease (2.2 vs. 0.2 years, respectively). Compared to those without lung disease, patients with lung disease had a longer time to liver disease-related clinical events (8.5 years and not reached, respectively). AATD-LD-Pi*ZZ patients without lung disease were more likely to undergo liver transplantation compared with those with lung disease. CONCLUSION: In patients with AATD and lung disease, there is a delay in the diagnosis of comorbid liver disease. Our findings suggest that liver disease may progress more rapidly in patients without comorbid lung disease.


Assuntos
Pneumopatias , Deficiência de alfa 1-Antitripsina , Humanos , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/diagnóstico , Deficiência de alfa 1-Antitripsina/genética , Pneumopatias/complicações , Genótipo , Progressão da Doença , Inibidores de Proteases
17.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662200

RESUMO

Extracellular vesicles (EVs) are nanoscale lipid bilayer particles secreted by cells. EVs may carry markers of the tissue of origin and its disease state which makes them incredibly promising for disease diagnosis and surveillance. While the armamentarium of EV analysis technologies is rapidly expanding, there remains a strong need for multiparametric analysis with single EV resolution. Nanoprojectile (NP) secondary ion mass spectrometry (NP-SIMS) relies on bombarding a substrate of interest with individual gold NPs resolved in time and space. Each projectile creates an impact crater of 10-20 nm in diameter while molecules emitted from each impact are mass analyzed and recorded as individual mass spectra. We demonstrate the utility of NP-SIMS for analysis of single EVs derived from normal liver cells (hepatocytes) and liver cancer cells. EVs were captured on antibody (Ab)-functionalized gold substrate then labeled with Abs carrying lanthanide (Ln) MS tags (Ab@Ln). These tags targeted four markers selected for identifying all EVs, and specific to hepatocytes or liver cancer. NP-SIMS was used to detect Ab@Ln-tags co-localized on the same EV and to construct scatter plots of surface marker expression for thousands of EVs with the capability of categorizing individual EVs. Additionally, NP-SIMS revealed information about the chemical nano-environment where targeted moieties co-localized. Our approach allowed analysis of population heterogeneity with single EV resolution and distinguishing between hepatocyte and liver cancer EVs based on surface marker expression. NP-SIMS holds considerable promise for multiplexed analysis of single EVs and may become a valuable tool for identifying and validating EV biomarkers of cancer and other diseases.

18.
Compr Physiol ; 13(3): 4631-4658, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358519

RESUMO

Extracellular vesicles (EVs) are membrane-bound nanoparticles released by cells and are an important means of intercellular communication in physiological and pathological states. We provide an overview of recent advances in the understanding of EV biogenesis, cargo selection, recipient cell effects, and key considerations in isolation and characterization techniques. Studies on the physiological role of EVs have relied on cell-based model systems due to technical limitations of studying endogenous nanoparticles in vivo . Several recent studies have elucidated the mechanistic role of EVs in liver diseases, including nonalcoholic fatty liver disease, viral hepatitis, cholestatic liver disease, alcohol-associated liver disease, acute liver injury, and liver cancers. Employing disease models and human samples, the biogenesis of lipotoxic EVs downstream of endoplasmic reticulum stress and microvesicles via intracellular activation stress signaling are discussed in detail. The diverse cargoes of EVs including proteins, lipids, and nucleic acids can be enriched in a disease-specific manner. By carrying diverse cargo, EVs can directly confer pathogenic potential, for example, recruitment and activation of monocyte-derived macrophages in NASH and tumorigenicity and chemoresistance in hepatocellular carcinoma. We discuss the pathogenic role of EVs cargoes and the signaling pathways activated by EVs in recipient cells. We review the literature that EVs can serve as biomarkers in hepatobiliary diseases. Further, we describe novel approaches to engineer EVs to deliver regulatory signals to specific cell types, and thus use them as therapeutic shuttles in liver diseases. Lastly, we identify key lacunae and future directions in this promising field of discovery and development. © 2023 American Physiological Society. Compr Physiol 13:4631-4658, 2023.


Assuntos
Vesículas Extracelulares , Hepatopatia Gordurosa não Alcoólica , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Modelos Biológicos , Transporte Biológico
19.
Front Immunol ; 14: 1130184, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153573

RESUMO

Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid associated with nonalcoholic steatohepatitis (NASH). Immune cell-driven inflammation is a key determinant of NASH progression. Macrophages, monocytes, NK cells, T cells, NKT cells, and B cells variably express S1P receptors from a repertoire of 5 receptors termed S1P1 - S1P5. We have previously demonstrated that non-specific S1P receptor antagonism ameliorates NASH and attenuates hepatic macrophage accumulation. However, the effect of S1P receptor antagonism on additional immune cell populations in NASH remains unknown. We hypothesized that S1P receptor specific modulation may ameliorate NASH by altering leukocyte recruitment. A murine NASH model was established by dietary feeding of C57BL/6 male mice with a diet high in fructose, saturated fat, and cholesterol (FFC) for 24 weeks. In the last 4 weeks of dietary feeding, the mice received the S1P1,4,5 modulator Etrasimod or the S1P1 modulator Amiselimod, daily by oral gavage. Liver injury and inflammation were determined by histological and gene expression analyses. Intrahepatic leukocyte populations were analyzed by flow cytometry, immunohistochemistry, and mRNA expression. Alanine aminotransferase, a sensitive circulating marker for liver injury, was reduced in response to Etrasimod and Amiselimod treatment. Liver histology showed a reduction in inflammatory foci in Etrasimod-treated mice. Etrasimod treatment substantially altered the intrahepatic leukocyte populations through a reduction in the frequency of T cells, B cells, and NKT cells and a proportional increase in CD11b+ myeloid cells, polymorphonuclear cells, and double negative T cells in FFC-fed and control standard chow diet (CD)-fed mice. In contrast, FFC-fed Amiselimod-treated mice showed no changes in the frequencies of intrahepatic leukocytes. Consistent with the improvement in liver injury and inflammation, hepatic macrophage accumulation and the gene expression of proinflammatory markers such as Lgals3 and Mcp-1 were decreased in Etrasimod-treated FFC-fed mice. Etrasimod treated mouse livers demonstrated an increase in non-inflammatory (Marco) and lipid associated (Trem2) macrophage markers. Thus, S1P1,4,5 modulation by Etrasimod is more effective than S1P1 antagonism by Amiselimod, at the dose tested, in ameliorating NASH, likely due to the alteration of leukocyte trafficking and recruitment. Etrasimod treatment results in a substantial attenuation of liver injury and inflammation in murine NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores de Esfingosina-1-Fosfato , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Leucócitos/metabolismo , Glicoproteínas de Membrana , Receptores Imunológicos/uso terapêutico
20.
Clin Gastroenterol Hepatol ; 21(12): 3080-3088.e9, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37004974

RESUMO

BACKGROUND & AIMS: Although histology is considered the gold standard for diagnosis of alcohol-associated hepatitis (AH), it is not required for entry into therapeutic studies if patients meet National Institute on Alcohol Abuse and Alcoholism (NIAAA) consensus criteria for probable AH. Our aim was to assess the diagnostic accuracy of NIAAA criteria against liver biopsy and to explore new criteria to enhance diagnostic accuracy for AH. METHODS: A total of 268 consecutive patients with alcohol-related liver disease with liver biopsy were prospectively included: 210 and 58 in the derivation and validation cohorts, respectively. NIAAA criteria and histological diagnosis of alcoholic steatohepatitis (ASH) were independently reviewed by clinical investigators and pathologists from Hospital Clínic and Mayo Clinic. Using biopsy-proven ASH as gold standard we determined diagnostic capability of NIAAA criteria and proposed the new improved criteria. RESULTS: In the derivation cohort, diagnostic accuracy of NIAAA for AH was modest (72%) due to low sensitivity (63%). Subjects who did not meet NIAAA with ASH at liver biopsy had lower 1-year survival compared with subjects without ASH (70% vs 90%; P < .001). NIAAAm-CRP criteria, created by adding C-reactive protein and modifying the variables of the original NIAAA, had higher sensitivity (70%), accuracy (78%), and specificity (83%). Accuracy was also higher in a sensitivity analysis in severe AH (74% vs 65%). In the validation cohort, NIAAAm-CRP and NIAAA criteria had a sensitivity of 56% vs 52% and an accuracy of 76% vs 69%, respectively. CONCLUSION: NIAAA criteria are suboptimal for the diagnosis of AH. The proposed NIAAAm-CRP criteria may improve accuracy for noninvasive diagnosis of AH in patients with alcohol-related liver disease.


Assuntos
Alcoolismo , Fígado Gorduroso Alcoólico , Hepatite Alcoólica , Estados Unidos , Humanos , National Institute on Alcohol Abuse and Alcoholism (U.S.) , Hepatite Alcoólica/diagnóstico , Fígado Gorduroso Alcoólico/diagnóstico , Alcoolismo/complicações , Alcoolismo/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...