Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798611

RESUMO

Vasculopathies occur 15 years earlier in individuals with diabetes mellitus (DM) as compared to those without, but the underlying mechanisms driving diabetic vasculopathy remain incompletely understood. Endothelial cells (ECs) and macrophages (MΦ) are critical players in vascular wall and their crosstalk is crucial in diabetic vasculopathy. In diabetes, EC activation enables monocyte recruitment, which transmigrate into the intima and differentiate into macrophages (MΦ). Beyond this established model of diapedesis, EC-MΦ interplay is highly intricate and heterogenous. To capture these highly context dependent EC-MΦ interactions, we leveraged single-cell (sc)RNA-seq in conjunction with spatial transcriptome (ST)-seq profiling to analyze human mesenteric arteries from non-diabetic (ND) and type 2 diabetic (T2D) donors. We provide in this study a transcriptomic map encompassing major arterial vascular cells, e.g., EC, mononuclear phagocyte (MP), and T cells, and their interactions associated with human T2D. Furthermore, we identified Triggering Receptor Expressed on Myeloid Cells 2 ( TREM2) as a top T2D-induced gene in MP, with concomitant increase of TREM2 ligands in ECs. TREM2 induction was confirmed in mouse models of T2D and monocyte/MΦ subjected to DM-mimicking stimuli. Perturbing TREM2 with either an antibody or silencing RNA in MPs led to decreased pro-inflammatory responses in MPs and ECs and increased EC migration in vitro . In a mouse model of diabetes, TREM2 expression and its interaction with ECs are increased in the ischemic, as compared to non-ischemic muscles. Importantly, neutralization of TREM2 using a neutralizing antibody enhanced ischemic recovery and flow reperfusion in the diabetic mice, suggesting a role of TREM2 in promoting diabetic PAD. Finally, we verified that both TREM2 expression and the TREM2-EC-interaction are increased in human patients with DM-PAD. Collectively, our study presents the first atlas of human diabetic vessels with a focus on EC-MP interactions. Exemplified by TREM2, our study provides valuable insights into EC-MΦ interactions, key processes contributing to diabetic vasculopathies and the potential of targeting these interactions for therapeutic development.

2.
Elife ; 132024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251974

RESUMO

Chromatin-associated RNAs (caRNAs) form a relatively poorly recognized layer of the epigenome. The caRNAs reported to date are transcribed from the nuclear genome. Here, leveraging a recently developed assay for detection of caRNAs and their genomic association, we report that mitochondrial RNAs (mtRNAs) are attached to the nuclear genome and constitute a subset of caRNA, thus termed mt-caRNA. In four human cell types analyzed, mt-caRNAs preferentially attach to promoter regions. In human endothelial cells (ECs), the level of mt-caRNA-promoter attachment changes in response to environmental stress that mimics diabetes. Suppression of a non-coding mt-caRNA in ECs attenuates stress-induced nascent RNA transcription from the nuclear genome, including that of critical genes regulating cell adhesion, and abolishes stress-induced monocyte adhesion, a hallmark of dysfunctional ECs. Finally, we report increased nuclear localization of multiple mtRNAs in the ECs of human diabetic donors, suggesting many mtRNA translocate to the nucleus in a cell stress and disease-dependent manner. These data nominate mt-caRNAs as messenger molecules responsible for mitochondrial-nuclear communication and connect the immediate product of mitochondrial transcription with the transcriptional regulation of the nuclear genome.


Assuntos
Células Endoteliais , RNA , Humanos , RNA Mitocondrial/genética , Cromatina , Bioensaio
3.
Methodist Debakey Cardiovasc J ; 19(5): 47-57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028966

RESUMO

Peripheral arterial disease (PAD) represents a global health concern with a rising prevalence attributed to factors such as obesity, diabetes, aging, and smoking. Among patients with PAD, chronic limb-threatening ischemia (CLTI) is the most severe manifestation, associated with substantial morbidity and mortality. While revascularization remains the primary therapy for CLTI, not all patients are candidates for such interventions, highlighting the need for alternative approaches. Impaired angiogenesis, the growth of new blood vessels, is a central feature of PAD, and despite decades of research, effective clinical treatments remain elusive. Epigenetics, the study of heritable changes in gene expression, has gained prominence in understanding PAD pathogenesis. Here, we explore the role of epigenetic regulation in angiogenesis within the context of PAD, with a focus on long non-coding RNAs and fibroblast-endothelial cell transdifferentiation. Additionally, we discuss the interplay between metabolic control and epigenetic regulation, providing insights into potential novel therapeutic avenues for improving PAD treatments. This review aims to offer a concise update on the application of epigenetics in angiogenesis and PAD research, inspiring further investigations in this promising field.


Assuntos
Epigênese Genética , Doença Arterial Periférica , Humanos , Doença Arterial Periférica/genética , Isquemia/genética
4.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36512424

RESUMO

Impaired angiogenesis in diabetes is a key process contributing to ischemic diseases such as peripheral arterial disease. Epigenetic mechanisms, including those mediated by long noncoding RNAs (lncRNAs), are crucial links connecting diabetes and the related chronic tissue ischemia. Here we identify the lncRNA that enhances endothelial nitric oxide synthase (eNOS) expression (LEENE) as a regulator of angiogenesis and ischemic response. LEENE expression was decreased in diabetic conditions in cultured endothelial cells (ECs), mouse hind limb muscles, and human arteries. Inhibition of LEENE in human microvascular ECs reduced their angiogenic capacity with a dysregulated angiogenic gene program. Diabetic mice deficient in Leene demonstrated impaired angiogenesis and perfusion following hind limb ischemia. Importantly, overexpression of human LEENE rescued the impaired ischemic response in Leene-knockout mice at tissue functional and single-cell transcriptomic levels. Mechanistically, LEENE RNA promoted transcription of proangiogenic genes in ECs, such as KDR (encoding VEGFR2) and NOS3 (encoding eNOS), potentially by interacting with LEO1, a key component of the RNA polymerase II-associated factor complex and MYC, a crucial transcription factor for angiogenesis. Taken together, our findings demonstrate an essential role for LEENE in the regulation of angiogenesis and tissue perfusion. Functional enhancement of LEENE to restore angiogenesis for tissue repair and regeneration may represent a potential strategy to tackle ischemic vascular diseases.


Assuntos
Diabetes Mellitus Experimental , RNA Longo não Codificante , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Endoteliais/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Músculo Esquelético/metabolismo , Neovascularização Fisiológica/genética , Isquemia/genética , Isquemia/metabolismo , Camundongos Knockout , Membro Posterior , Camundongos Endogâmicos C57BL
5.
Front Cardiovasc Med ; 9: 881916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837599

RESUMO

Vascular endothelial cells (ECs) play a pivotal role in whole body homeostasis. Recent advances have revealed enhancer-associated long non-coding RNAs (lncRNAs) as essential regulators in EC function. We investigated LINC00607, a super enhancer-derived lncRNA (SE-lncRNA) in human arteries with an emphasis on ECs. Based on public databases and our single cell RNA-sequencing (scRNA-seq) data from human arteries collected from healthy and diabetic donors, we found that LINC00607 is abundantly expressed in the arteries and its level is increased in diabetic humans. Using RNA-sequencing, we characterized the transcriptomes regulated by LINC00607 in ECs and vascular smooth muscle cells (VSMCs) and in basal and diabetic conditions in ECs. Furthermore, through transcriptomic and promoter analysis, we identified c-Myc as an upstream transcription factor of LINC00607. Finally, using scRNA-seq, we demonstrated that modified antisense oligonucleotide inhibitor of LINC00607 can reverse dysfunctional changes induced by high glucose and TNFα in ECs. Collectively, our study demonstrates a multi-pronged approach to characterize LINC00607 in vascular cells and its gene regulatory networks in ECs and VSMCs. Our findings provide new insights into the regulation and function of SE-derived lncRNAs in both vascular homeostasis and dysfunction in a cell-type and context-dependent manner, which could have a significant impact on our understanding of epigenetic regulation implicated in cardiovascular health and diseases like diabetes.

6.
J Vis Exp ; (181)2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35343966

RESUMO

Endothelial cells (ECs) are crucial for vascular and whole-body function through their dynamic response to environmental cues. Elucidating the transcriptome and epigenome of ECs is paramount to understanding their roles in development, health, and disease, but is limited in the availability of isolated primary cells. Recent technologies have enabled the high-throughput profiling of EC transcriptome and epigenome, leading to the identification of previously unknown EC cell subpopulations and developmental trajectories. While EC cultures are a useful tool in the exploration of EC function and dysfunction, the culture conditions and multiple passages can introduce external variables that alter the properties of native EC, including morphology, epigenetic state, and gene expression program. To overcome this limitation, the present paper demonstrates a method of isolating human primary ECs from donor mesenteric arteries aiming to capture their native state. ECs in the intimal layer are dissociated mechanically and biochemically with the use of particular enzymes. The resultant cells can be directly used for bulk RNA or single-cell RNA-sequencing or plated for culture. In addition, a workflow is described for the preparation of human arterial tissue for spatial transcriptomics, specifically for a commercially available platform, although this method is also suitable for other spatial transcriptome profiling techniques. This methodology can be applied to different vessels collected from a variety of donors in health or disease states to gain insights into EC transcriptional and epigenetic regulation, a pivotal aspect of endothelial cell biology.


Assuntos
Células Endoteliais , Transcriptoma , Células Endoteliais/metabolismo , Endotélio Vascular , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...