Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 890551, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620681

RESUMO

Abiotic stressors such as drought and heat predispose chickpea plants to pathogens of key importance leading to significant crop loss under field conditions. In this study, we have investigated the influence of drought and high temperature on the incidence and severity of dry root rot disease (caused by Macrophomina phaseolina) in chickpea, under extensive on- and off-season field trials and greenhouse conditions. We explored the association between drought tolerance and dry root rot resistance in two chickpea genotypes, ICC 4958 and JG 62, with contrasting resistance to dry root rot. In addition, we extensively analyzed various patho-morphological and root architecture traits altered by combined stresses under field and greenhouse conditions in these genotypes. We further observed the role of edaphic factors in dry root rot incidence under field conditions. Altogether, our results suggest a strong negative correlation between the plant water relations and dry root rot severity in chickpeas, indicating an association between drought tolerance and dry root rot resistance. Additionally, the significant role of heat stress in altering the dynamics of dry root rot and the importance of combinatorial screening of chickpea germplasm for dry root rot resistance, drought, and heat stress have been revealed.

2.
Appl Plant Sci ; 9(8): e11445, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34504738

RESUMO

PREMISE: A comprehensive field-based screening protocol is lacking for dry root rot (DRR) disease in chickpea, which is caused by Macrophomina phaseolina (formerly referred to as Rhizoctonia bataticola). Here, we describe a protocol for establishing a sick plot for DRR to enable disease assessment of a large number of chickpea plants during the natural growing season. METHODS AND RESULTS: We used a chickpea plot with >30% DRR incidence, and enriched the inoculum by cultivating highly susceptible chickpea plant genotypes and incorporating infected plant material into the soil. The chickpea plants were then subjected to infection in developed sick plots with various levels of soil moisture under natural field conditions. CONCLUSIONS: Our protocol provides a robust way to impose M. phaseolina infection on chickpea plants under natural field conditions and to investigate plant responses to the infection at morphological, physiological, and molecular levels. This method can also be used to screen for other soil-borne diseases in a variety of plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...