Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906993

RESUMO

Moiré superlattices have emerged as a new platform for studying strongly correlated quantum phenomena, but these systems have been largely limited to van der Waals layer two-dimensional materials. Here we introduce moiré superlattices leveraging ultrathin, ligand-free halide perovskites, facilitated by ionic interactions. Square moiré superlattices with varying periodic lengths are clearly visualized through high-resolution transmission electron microscopy. Twist-angle-dependent transient photoluminescence microscopy and electrical characterizations indicate the emergence of localized bright excitons and trapped charge carriers near a twist angle of ~10°. The localized excitons are accompanied by enhanced exciton emission, attributed to an increased oscillator strength by a theoretically predicted flat band. This research showcases the promise of two-dimensional perovskites as unique room-temperature moiré materials.

2.
Nano Lett ; 24(15): 4505-4511, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578047

RESUMO

Twisted van der Waals heterostructures show intriguing interface exciton physics, including hybridization effects and emergence of moiré potentials. Recent experiments have revealed that moiré-trapped excitons exhibit remarkable dynamics, where excited states show lifetimes that are several orders of magnitude longer than in monolayers. The origin of this behavior is still under debate. Based on a microscopic many-particle approach, we investigate the phonon-driven relaxation cascade of nonequilibrium moiré excitons in the exemplary MoSe2-WSe2 heterostructure. We track exciton relaxation pathways across different moiré mini-bands and identify the phonon-scattering channels assisting the spatial redistribution of excitons into low-energy pockets of the moiré potential. We unravel a phonon bottleneck in the flat band structure at low twist angles preventing excitons from fully thermalizing into the lowest state, explaining the measured enhanced emission intensity and lifetime of excited moiré excitons. Overall, our work provides important insights into exciton relaxation dynamics in flat-band exciton materials.

3.
Nanoscale ; 16(18): 8996-9003, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38623653

RESUMO

Twisted transition metal dichalcogenides (TMDs) present an intriguing platform for exploring excitons and their transport properties. By introducing a twist angle, a moiré superlattice forms, providing a spatially dependent exciton energy landscape. Based on a microscopic many-particle theory, we investigate in this work polaron-induced changes in exciton transport properties in the exemplary MoSe2/WSe2 heterostructure. We demonstrate that polaron formation and the associated enhancement of the moiré exciton mass lead to a significant band flattening. As a result, the moiré inter-cell tunneling and the propagation velocity undergo noticeable temperature and twist-angle dependent changes. We predict a reduction of the hopping strength ranging from 80% at a twist angle of 1° to 30% at 3° at room temperature. The provided microscopic insights into the spatio-temporal exciton dynamics in presence of a moiré potential further expand the possibilities to tune charge and energy transport in 2D materials.

4.
Phys Rev Lett ; 132(3): 036903, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307073

RESUMO

The optical response of doped monolayer semiconductors is governed by trions, i.e. photoexcited electron-hole pairs bound to doping charges. While their photoluminescence (PL) signatures have been identified in experiments, a microscopic model consistently capturing bright and dark trion peaks is still lacking. In this work, we derive a generalized trion PL formula on a quantum-mechanical footing, considering direct and phonon-assisted recombination mechanisms. We show the trion energy landscape in WSe_{2} by solving the trion Schrödinger equation. We reveal that the mass imbalance between equal charges results in less stable trions exhibiting a small binding energy and, interestingly, a large energetic offset from exciton peaks in PL spectra. Furthermore, we compute the temperature-dependent PL spectra for n- and p-doped monolayers and predict yet unobserved signatures originating from trions with an electron at the Λ point. Our work presents an important step toward a microscopic understanding of the internal structure of trions determining their stability and optical fingerprint.

5.
Sci Adv ; 10(6): eadi1323, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324690

RESUMO

In two-dimensional semiconductors, cooperative and correlated interactions determine the material's excitonic properties and can even lead to the creation of correlated states of matter. Here, we study the fundamental two-particle correlated exciton state formed by the Coulomb interaction between single-particle holes and electrons. We find that the ultrafast transfer of an exciton's hole across a type II band-aligned semiconductor heterostructure leads to an unexpected sub-200-femtosecond upshift of the single-particle energy of the electron being photoemitted from the two-particle exciton state. While energy relaxation usually leads to an energetic downshift of the spectroscopic signature, we show that this upshift is a clear fingerprint of the correlated interaction of the electron and hole parts of the exciton. In this way, time-resolved photoelectron spectroscopy is straightforwardly established as a powerful method to access electron-hole correlations and cooperative behavior in quantum materials. Our work highlights this capability and motivates the future study of optically inaccessible correlated excitonic and electronic states of matter.

6.
Nat Commun ; 14(1): 6910, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903787

RESUMO

Transition metal dichalcogenide (TMD) heterobilayers provide a versatile platform to explore unique excitonic physics via the properties of the constituent TMDs and external stimuli. Interlayer excitons (IXs) can form in TMD heterobilayers as delocalized or localized states. However, the localization of IX in different types of potential traps, the emergence of biexcitons in the high-excitation regime, and the impact of potential traps on biexciton formation have remained elusive. In our work, we observe two types of potential traps in a MoSe2/WSe2 heterobilayer, which result in significantly different emission behavior of IXs at different temperatures. We identify the origin of these traps as localized defect states and the moiré potential of the TMD heterobilayer. Furthermore, with strong excitation intensity, a superlinear emission behavior indicates the emergence of interlayer biexcitons, whose formation peaks at a specific temperature. Our work elucidates the different excitation and temperature regimes required for the formation of both localized and delocalized IX and biexcitons and, thus, contributes to a better understanding and application of the rich exciton physics in TMD heterostructures.

7.
Nat Commun ; 14(1): 5548, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684279

RESUMO

We report the emergence of dark-excitons in transition-metal-dichalcogenide (TMD) heterostructures that strongly rely on the stacking sequence, i.e., momentum-dark K-Q exciton located exclusively at the top layer of the heterostructure. The feature stems from band renormalization and is distinct from those of typical neutral excitons or trions, regardless of materials, substrates, and even homogeneous bilayers, which is further confirmed by scanning tunneling spectroscopy. To understand the unusual stacking sequence, we introduce the excitonic Elliot formula by imposing strain exclusively on the top layer that could be a consequence of the stacking process. We further find that the intensity ratio of Q- to K-excitons in the same layer is inversely proportional to laser power, unlike for conventional K-K excitons. This can be a metric for engineering the intensity of dark K-Q excitons in TMD heterostructures, which could be useful for optical power switches in solar panels.

8.
Nat Photonics ; 17(7): 615-621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426431

RESUMO

Interactions between out-of-plane dipoles in bosonic gases enable the long-range propagation of excitons. The lack of direct control over collective dipolar properties has so far limited the degrees of tunability and the microscopic understanding of exciton transport. In this work we modulate the layer hybridization and interplay between many-body interactions of excitons in a van der Waals heterostructure with an applied vertical electric field. By performing spatiotemporally resolved measurements supported by microscopic theory, we uncover the dipole-dependent properties and transport of excitons with different degrees of hybridization. Moreover, we find constant emission quantum yields of the transporting species as a function of excitation power with radiative decay mechanisms dominating over nonradiative ones, a fundamental requirement for efficient excitonic devices. Our findings provide a complete picture of the many-body effects in the transport of dilute exciton gases, and have crucial implications for studying emerging states of matter such as Bose-Einstein condensation and optoelectronic applications based on exciton propagation.

9.
Nanoscale ; 15(26): 11064-11071, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37309577

RESUMO

Transition-metal dichalcogenide bilayers exhibit a rich exciton landscape including layer-hybridized excitons, i.e. excitons which are of partly intra- and interlayer nature. In this work, we study hybrid exciton-exciton interactions in naturally stacked WSe2 homobilayers. In these materials, the exciton landscape is electrically tunable such that the low-energy states can be rendered more or less interlayer-like depending on the strength of the external electric field. Based on a microscopic and material-specific many-particle theory, we reveal two intriguing interaction regimes: a low-dipole regime at small electric fields and a high-dipole regime at larger fields, involving interactions between hybrid excitons with a substantially different intra- and interlayer composition in the two regimes. While the low-dipole regime is characterized by weak inter-excitonic interactions between intralayer-like excitons, the high-dipole regime involves mostly interlayer-like excitons which display a strong dipole-dipole repulsion and give rise to large spectral blue-shifts and a highly anomalous diffusion. Overall, our microscopic study sheds light on the remarkable electrical tunability of hybrid exciton-exciton interactions in atomically thin semiconductors and can guide future experimental studies in this growing field of research.

11.
Nano Lett ; 23(10): 4627-4633, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37184441

RESUMO

In superlattices of twisted semiconductor monolayers, tunable moiré potentials emerge, trapping excitons into periodic arrays. In particular, spatially separated interlayer excitons are subject to a deep potential landscape and they exhibit a permanent dipole providing a unique opportunity to study interacting bosonic lattices. Recent experiments have demonstrated density-dependent transport properties of moiré excitons, which could play a key role for technological applications. However, the intriguing interplay between exciton-exciton interactions and moiré trapping has not been well understood yet. In this work, we develop a microscopic theory of interacting excitons in external potentials allowing us to tackle this highly challenging problem. We find that interactions between moiré excitons lead to a delocalization at intermediate densities, and we show how this transition can be tuned via twist angle and temperature. The delocalization is accompanied by a modification of optical moiré resonances, which gradually merge into a single free exciton peak.

12.
Nano Lett ; 23(10): 4399-4405, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37154560

RESUMO

Transition metal dichalcogenide heterostructures provide a versatile platform to explore electronic and excitonic phases. As the excitation density exceeds the critical Mott density, interlayer excitons are ionized into an electron-hole plasma phase. The transport of the highly non-equilibrium plasma is relevant for high-power optoelectronic devices but has not been carefully investigated previously. Here, we employ spatially resolved pump-probe microscopy to investigate the spatial-temporal dynamics of interlayer excitons and hot-plasma phase in a MoSe2/WSe2 twisted bilayer. At the excitation density of ∼1014 cm-2, well exceeding the Mott density, we find a surprisingly rapid initial expansion of hot plasma to a few microns away from the excitation source within ∼0.2 ps. Microscopic theory reveals that this rapid expansion is mainly driven by Fermi pressure and Coulomb repulsion, while the hot carrier effect has only a minor effect in the plasma phase.

13.
Nat Commun ; 14(1): 2438, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117167

RESUMO

The existence of bound charge transfer (CT) excitons at the interface of monolayer lateral heterojunctions has been debated in literature, but contrary to the case of interlayer excitons in vertical heterostructure their observation still has to be confirmed. Here, we present a microscopic study investigating signatures of bound CT excitons in photoluminescence spectra at the interface of hBN-encapsulated lateral MoSe2-WSe2 heterostructures. Based on a fully microscopic and material-specific theory, we reveal the many-particle processes behind the formation of CT excitons and how they can be tuned via interface- and dielectric engineering. For junction widths smaller than the Coulomb-induced Bohr radius we predict the appearance of a low-energy CT exciton. The theoretical prediction is compared with experimental low-temperature photoluminescence measurements showing emission in the bound CT excitons energy range. We show that for hBN-encapsulated heterostructures, CT excitons exhibit small binding energies of just a few tens meV and at the same time large dipole moments, making them promising materials for optoelectronic applications (benefiting from an efficient exciton dissociation and fast dipole-driven exciton propagation). Our joint theory-experiment study presents a significant step towards a microscopic understanding of optical properties of technologically promising 2D lateral heterostructures.

14.
Nanoscale ; 15(15): 7154-7163, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37009757

RESUMO

The transition metal dichalcogenide family of semiconducting two-dimensional materials has recently shown a prominent potential to be an ideal platform to study the exciton Mott transition into electron-hole plasma and liquid phases due to their strong Coulomb interactions. Here, we show that pulsed laser excitation at high pump fluences can induce this exciton Mott transition to an electron-hole plasma in mono and few-layer transition metal dichalcogenides at room temperature. The formation of an electron-hole plasma leads to a broadband light emission spanning from the near infrared to the visible region. In agreement with our theoretical calculations, the photoluminescence emission at high energies displays an exponential decay that directly reflects the electronic temperature - a characteristic fingerprint of unbound electron-hole pair recombination. Furthermore, two-pulse excitation correlation measurements were performed to study the dynamics of electronic cooling, which shows two decay time components, one of less than 100 fs and a slower component of few ps associated with the electron-phonon and phonon-lattice bath thermalizations, respectively. Our work may shed light on further studies of the exciton Mott transition into other two-dimensional materials and their heterostructures and its applications in nanolasers and other optoelectronic devices.

15.
Nanoscale ; 15(4): 1730-1738, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36594632

RESUMO

The vertical stacking of two-dimensional materials into heterostructures gives rise to a plethora of intriguing optoelectronic properties and presents an unprecedented potential for technological development. While much progress has been made combining different monolayers of transition metal dichalcogenides (TMDs), little is known about TMD-based heterostructures including organic layers of molecules. Here, we present a joint theory-experiment study on a TMD/tetracene heterostructure demonstrating clear signatures of spatially separated interlayer excitons in low temperature photoluminescence spectra. Here, the Coulomb-bound electrons and holes are localized either in the TMD or in the molecule layer, respectively. We reveal both in theory and experiment signatures of the entire intra- and interlayer exciton landscape in the photoluminescence spectra. In particular, we find both in theory and experiment a pronounced transfer of intensity from the intralayer TMD exciton to a series of energetically lower interlayer excitons with decreasing temperature. In addition, we find signatures of phonon-sidebands stemming from these interlayer exciton states. Our findings shed light on the microscopic nature of interlayer excitons in TMD/molecule heterostructures and could have important implications for technological applications of these materials.

16.
Nano Lett ; 22(22): 8883-8891, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36346874

RESUMO

Interactions among a collection of particles generate many-body effects in solids that result in striking modifications of material properties. The heavy carrier mass that yields strong interactions and gate control of carrier density over a wide range makes two-dimensional semiconductors an exciting playground to explore many-body physics. The family of III-VI metal monochalcogenides emerges as a new platform for this purpose because of its excellent optical properties and the flat valence band dispersion. In this work, we present a complete study of charge-tunable excitons in few-layer InSe by photoluminescence spectroscopy. From the optical spectra, we establish that free excitons in InSe are more likely to be captured by ionized donors leading to the formation of bound exciton complexes. Surprisingly, a pronounced red shift of the exciton energy accompanied by a decrease of the exciton binding energy upon hole-doping reveals a significant band gap renormalization induced by the presence of the Fermi reservoir.

17.
Nature ; 608(7923): 499-503, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978130

RESUMO

Moiré superlattices in atomically thin van der Waals heterostructures hold great promise for extended control of electronic and valleytronic lifetimes1-7, the confinement of excitons in artificial moiré lattices8-13 and the formation of exotic quantum phases14-18. Such moiré-induced emergent phenomena are particularly strong for interlayer excitons, where the hole and the electron are localized in different layers of the heterostructure19,20. To exploit the full potential of correlated moiré and exciton physics, a thorough understanding of the ultrafast interlayer exciton formation process and the real-space wavefunction confinement is indispensable. Here we show that femtosecond photoemission momentum microscopy provides quantitative access to these key properties of the moiré interlayer excitons. First, we elucidate that interlayer excitons are dominantly formed through femtosecond exciton-phonon scattering and subsequent charge transfer at the interlayer-hybridized Σ valleys. Second, we show that interlayer excitons exhibit a momentum fingerprint that is a direct hallmark of the superlattice moiré modification. Third, we reconstruct the wavefunction distribution of the electronic part of the exciton and compare the size with the real-space moiré superlattice. Our work provides direct access to interlayer exciton formation dynamics in space and time and reveals opportunities to study correlated moiré and exciton physics for the future realization of exotic quantum phases of matter.

18.
Nanoscale ; 14(30): 10851-10861, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35838641

RESUMO

Two-dimensional (2D) semiconductors have opened new horizons for future optoelectronic applications through efficient light-matter and many-body interactions at quantum level. Anisotropic 2D materials like rhenium disulphide (ReS2) present a new class of materials with polarized excitonic resonances. Here, we demonstrate a WSe2/ReS2 heterostructure which exhibits a significant photoluminescence quenching at room temperature as well as at low temperatures. This indicates an efficient charge transfer due to the electron-hole exchange interaction. The band alignment of two materials suggests that electrons optically injected into WSe2 are transferred to ReS2. Polarization resolved luminescence measurements reveal two additional polarization-sensitive exciton peaks in ReS2 in addition to the two conventional exciton resonances X1 and X2. Furthermore, for ReS2 we observe two charged excitons (trions) with binding energies of 18 meV and 15 meV, respectively. The bi-excitons of WSe2 become polarization sensitive and inherit polarizing properties from the underlying ReS2 layers, which act as patterned substrates for top layer. Overall, our findings provide a better understanding of optical signatures in 2D anisotropic materials.

19.
Nano Lett ; 22(11): 4468-4474, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35594200

RESUMO

Twisted atomically thin semiconductors are characterized by moiré excitons. Their optical signatures and selection rules are well understood. However, their hybridization with photons in the strong coupling regime for heterostructures integrated in an optical cavity has not been the focus of research yet. Here, we combine an excitonic density matrix formalism with a Hopfield approach to provide microscopic insights into moiré exciton polaritons. In particular, we show that exciton-light coupling, polariton energy, and even the number of polariton branches can be controlled via the twist angle. We find that these new hybrid light-exciton states become delocalized relative to the constituent excitons due to the mixing with light and higher-energy excitons. The system can be interpreted as a natural quantum metamaterial with a periodicity that can be engineered via the twist angle. Our study presents a significant advance in microscopic understanding and control of moiré exciton polaritons in twisted atomically thin semiconductors.

20.
Nano Lett ; 22(6): 2561-2568, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157466

RESUMO

The density-driven transition of an exciton gas into an electron-hole plasma remains a compelling question in condensed matter physics. In two-dimensional transition metal dichalcogenides, strongly bound excitons can undergo this phase change after transient injection of electron-hole pairs. Unfortunately, unavoidable nanoscale inhomogeneity in these materials has impeded quantitative investigation into this elusive transition. Here, we demonstrate how ultrafast polarization nanoscopy can capture the Mott transition through the density-dependent recombination dynamics of electron-hole pairs within a WSe2 homobilayer. For increasing carrier density, an initial monomolecular recombination of optically dark excitons transitions continuously into a bimolecular recombination of an unbound electron-hole plasma above 7 × 1012 cm-2. We resolve how the Mott transition modulates over nanometer length scales, directly evidencing the strong inhomogeneity in stacked monolayers. Our results demonstrate how ultrafast polarization nanoscopy could unveil the interplay of strong electronic correlations and interlayer coupling within a diverse range of stacked and twisted two-dimensional materials.


Assuntos
Elementos de Transição , Eletrônica , Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...