Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(8): e0256049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34383831

RESUMO

Sit-to-stand movement (STS) is a mundane activity, controlled by the central-nervous-system (CNS) via a complex neurophysiological mechanism that involves coordination of limbs for successful execution. Detailed analysis and accurate simulations of STS task have significant importance in clinical intervention, rehabilitation process, and better design for assistive devices. The CNS controls STS motion by taking inputs from proprioceptors. These input signals suffer delay in transmission to CNS making movement control and coordination more complex which may lead to larger body exertion or instability. This paper deals with the problem of STS movement execution in the presence of proprioceptive feedback delays in joint position and velocity. We present a high-gain observer (HGO) based feedback linearization control technique to mimic the CNS in controlling the STS transfer. The HGO estimates immeasurable delayed states to generate input signals for feedback. The feedback linearization output control law generates the passive torques at joints to execute the STS movement. The H2 dynamic controller calculates the optimal linear gains by using physiological variables. The whole scheme is simulated in MATLAB/Simulink. The simulations illustrate physiologically improved results. The ankle, knee, and hip joint position profiles show a high correlation of 0.91, 0.97, 0.80 with the experimentally generated reference profiles. The faster observer dynamics and global boundness of controller result in compensation of delays. The low error and high correlation of simulation results demonstrate (1) the reliability and effectiveness of the proposed scheme for customization of human models and (2) highlight the fact that for detailed analysis and accurate simulations of STS movement the modeling scheme must consider nonlinearities of the system.


Assuntos
Simulação por Computador , Retroalimentação Sensorial/fisiologia , Movimento , Postura , Postura Sentada , Posição Ortostática , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/fisiologia
2.
Sensors (Basel) ; 21(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066796

RESUMO

This article focuses on the output feedback control of single-link flexible-joint robot manipulators (SFJRMs) with matched disturbances and parametric uncertainties. Formally, four sensing elements are required to design the controller for single-link manipulators. We have designed a robust control technique for the semiglobal stabilization problem of the angular position of the link in the SFJRM system, with the availability of only a position sensing device. The sliding mode control (SMC) based output feedback controller is devised for SFJRM dynamics. The nonlinear model of SFJRM is considered to estimate the unknown states utilizing the high-gain observer (HGO). It is shown that the output under SMC using HGO-based estimated states coincides with that using original states when the gains of HGO are sufficiently high. Finally, the results are presented showing that the designed control technique works well when the SFJRM model is uncertain and matched perturbations are expected.

3.
ISA Trans ; 53(3): 802-15, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24588960

RESUMO

This paper describes the anti-windup compensator (AWC) design methodologies for stable and unstable cascade plants with cascade controllers facing actuator saturation. Two novel full-order decoupling AWC architectures, based on equivalence of the overall closed-loop system, are developed to deal with windup effects. The decoupled architectures have been developed, to formulate the AWC synthesis problem, by assuring equivalence of the coupled and the decoupled architectures, instead of using an analogy, for cascade control systems. A comparison of both AWC architectures from application point of view is provided to consolidate their utilities. Mainly, one of the architecture is better in terms of computational complexity for implementation, while the other is suitable for unstable cascade systems. On the basis of the architectures for cascade systems facing stability and performance degradation problems in the event of actuator saturation, the global AWC design methodologies utilizing linear matrix inequalities (LMIs) are developed. These LMIs are synthesized by application of the Lyapunov theory, the global sector condition and the ℒ2 gain reduction of the uncertain decoupled nonlinear component of the decoupled architecture. Further, an LMI-based local AWC design methodology is derived by utilizing a local sector condition by means of a quadratic Lyapunov function to resolve the windup problem for unstable cascade plants under saturation. To demonstrate effectiveness of the proposed AWC schemes, an underactuated mechanical system, the ball-and-beam system, is considered, and details of the simulation and practical implementation results are described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...